
Neural Sequence Modeling
Part 2: Recurrent Neural Networks and LSTMs

Aaron Mueller
CAS CS 505: Introduction to Natural Language Processing

Spring 2026
Boston University

Overview of Concepts

RNNs: A neural architecture for sequential data

Autoregressive: A system that recursively makes
predictions given its own outputs

LSTMs: An effective form of RNN that makes
extensive use of gates

Backpropagation through time (BPTT):
A method for updating weights in
recurrent models

Gate: A learned mechanism for filtering or transmitting
information

Recap: A Neural Text Classifier
Recall our text
classifier from last
time:

A Fixed-window Neural Language Model

If we replace the classifier
output layer with a
vocabulary-sized output
layer, we now have a
language model!

N-gram LMs vs. Fixed-window Neural LMs

• Improvements over n-gram LMs:

• No sparsity problem

• memory requirements, rather than

• Remaining problems:

• Fixed window is too small

• Enlarging window enlarges the weight matrix

• Window can never be too large!

• Each embedding uses different rows of the
weights. We don’t share weights across the
window positions.

O(n)
O(exp(n))

Long-distance dependencies are common.

The keys to the cabinet are on the table.

Yesterday, Kathy went to the store. She bought some
groceries, paper towels, … Today, Kathy went to school.

Q: Where did Kathy go yesterday?

Translate this to French: The black cat near the mat sat on the hat.
Le chat noir près du tapis s’est assis sur le chapeau.

How can we predict more than one token?

1. We need to add some sort of “memory” to handle long-range dependencies.

2. We also need a model that’s capable of tracking information across potentially
very long documents.

Let’s use a separate vector (context vector) to keep track of context.

Let’s use a recurrent architecture.

Recurrent Neural Networks (RNNs)
Elman, 1990

The input layer feeds into a hidden layer (like before).xt ht

However, the hidden layer has a recurrent connection that depends on the
current token as well as the hidden layer from the previous timestep .ht−1

This hidden state acts as a sort of memory or context vector.

The RNN Cell

Each recurrence takes the previous hidden state ,
previous context vector , and current input .

ht−1
ct−1 xt

It outputs the next hidden state , context vector , and an output token .ht ct ̂y

Recurrent Neural Networks (RNNs)

ht = g(Uht−1 + Wxt)

yt = f(Vht)

Each token’s hidden representation is a function
of the current token’s embedding and the
previous hidden state .

ht
xt

ht−1

Note: the weight matrices , , are the same
for each timestep !

U V W
t

Unrolling an RNN

Uses of RNNs
Sequence labeling: predict a label for every element in a sequence.

Encode: encode the entire sequence into a representation, and use that for some
downstream purpose.

[Figures from Greg Durrett.]

RNN Language Models

• Recall the chain rule for computing sequence probabilities:

• For n-grams, we had to use a limited context window of .

• For RNNs, the hidden state could potentially include information from any
timestep; thus, there is technically no limit to how long our context can be!

n − 1

p(w1, w2, …, wn) =
n

∏
i=1

p(wi |w<i)

RNN Language Models

ht = g(Uht−1 + Wxt)

ŷt = softmax(Vht)

The hidden state has size ; this is a hyperparameter.d

Here, (the “unembedding” matrix) is learned independently of
. Optionally, you can tie the embeddings by making the

transpose of . This allows you to learn fewer parameters.

V
E V

E

et = Ext

RNN Language Models

ŷt[k]

The probability of a sequence is the product of its tokens’ conditional probabilities:

The probability of a token given prior context is:

p(w1, w2, …, wn) =
n

∏
i=1

ŷi[wi]

Index of the token in
the probability distribution

Probability distribution
over tokens

As per usual, we actually work in log space:

p(w1, w2, …, wn) =
n

∑
i=1

log ŷi[wi]

Training an RNN

• Much like in classification, we can use a cross-entropy loss to train an RNN:

• Again, we assume that is always 1, so this simplifies to:

• In other words, the cross-entropy loss at a given timestep is the negative log-
probability of the correct next token.

p(yt[w])

t

LCE(ŷt, yt) = − ∑
w∈V

yt[w]log ŷt[w]

LCE(ŷt, yt) = − log ŷt[wt+1]

Training an RNN

1. Get a dataset consisting of documents.

• Each document consists of sequences of words .

2. Feed into RNN, compute probability distribution over tokens
for each timestep .

3. Compute the cross entropy loss at every position.

4. Average the loss across timesteps:

D
(w1, …, wT)

̂yt
t

LCE(ŷt, yt) =
1
T

T

∑
t=1

− log ŷt[wt+1]

Do forward inference for each timestep, accumulating the loss at each step.

The Forward Pass

Teacher forcing:
Regardless of what
the model predicted,
give it the correct
prior context when
predicting the next
token.

Backpropagation Through Time (BPTT)

• Backpropagation is straightforward when we only have one prediction to worry
about.

• However, RNNs make a bunch of predictions, each of which depends on the
previous timestep. How does backpropagation work in this case?

• Basically, we must backpropagate starting from the final prediction, and work our
way backwards to the first timestep. This is called backpropagation through
time (BPTT).

• This means there is now an factor in backprop’s time and space
complexity.

O(n)

Backpropagation Through Time (BPTT)

1. Do forward inference for each
timestep, accumulating the loss at
each step.

2. Process the sequence in reverse,
computing required gradients
step-by-step.

- If the sequence is short enough, we
can do this all in parallel!

- If not, we can break it into chunks and
use each chunk as a separate training
example.

RNNs vs. N-grams

Recurrent neural networks significantly outperform 5-gram LMs with Kneser-Ney
smoothing!

Word Error Rate

Perplexity

The Unreasonable Effectiveness of RNNs

Train an RNN on ≈100MB
of Wikipedia data:

(fake Yahoo link)

Model learns to open
and close parentheses
correctly!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://www.apple.com

The Unreasonable Effectiveness of RNNs

The same RNN learns
to produce correctly
formatted XML.

What Can You Fit in a Word Vector?

• We have one vector to handle the entire
input. What can it hold?

• Word meaning: definitely!

• Phrase meaning: very well, but not
perfectly

• Sentence meaning: iffy

• Document meaning: probably not

• We’re doing significantly better, but can’t
effectively handle super long context quite yet.

h

“You can't cram the
meaning of a whole %&!
$ing sentence into a
single $&!*ing vector!”

—Raymond Mooney, 2014

Why RNNs Are Cursed

In reality, it is very hard to make use of distant context.

It’s also very hard to learn well with long sequences: the same matrix is
getting multiplied over and over and over…

Vanishing and Exploding Gradients, Revisited

• Imagine you have a sequence that’s tokens long. and are a weight matrix
and hidden state, respectively.

• and are the upper bound of the norms of these objects.

• The partial derivative will be

• When is large, this can get huge (explode) or shrink to nothing (vanish)

In both cases, nothing of importance is learned. If vanishing, updates to the
parameters become 0. If exploding, the parameters are jumping around too much
and too fast to be useful.

t W h

βW βh

(βW βh)t−k

t

Long Short-term Memory Networks (LSTMs)

• Idea: Instead of learning what to keep or forget at the same time, let’s divide
context management into two subproblems:

1. Forget information that is no longer needed

2. Add information that is likely to be needed later

• This is less about the architecture and more about context management.

• Let’s implement this functionality via gates (implemented as additional weights).

Motivation

Long Short-term Memory Networks (LSTMs)
First, the forget gate decides what
information to delete:

ft = σ(Uf ht−1 + Wf xt) kt = ct−1 ⊙ ft

We decide what information
to extract:

gt = σ(Ught−1 + Wgxt)

The add gate selects information to add
to the current context:

it = σ(Uiht−1 + Wixt)
jt = gt ⊙ it

We add the modified context to get the
new context vector:

ct = jt + kt

Finally, the output gate decides what
information is needed for the current
hidden state: ot = σ(Uoht−1 + Woxt)

ht = ot ⊙ tanh(ct)

Long Short-term Memory Networks (LSTMs)

• You can think of the as
being your long-term
memory: what should we
hold onto for later?

• You can think of as the
short-term memory: what’s
needed to predict the very
next token?

c

h

Understanding LSTM Gates

Based on the current input, how much of the previous hidden state can we throw away?

Forget gate:

Understanding LSTM Gates

How much of the information in the current input should be incorporated into the
context vector?

Input gate:

Understanding LSTM Gates

Update the context vector: forget whatever the forget gate said to, add whatever the
input gate said to.

Context vector update:

Understanding LSTM Gates

Decide what to output: run the context vector through a tanh, run the hidden state
through an output gate, and multiply these all together to get the next hidden state.

Output gate:

Understanding LSTM Gates

• The , , gates control information flow across time

• / is the main computation of new information

f i o
g C̃

gf i
o

Basically, at each timestep, we’re computing:
• How much can we ignore old values of for this timestep?
• How much should we incorporate the input at this timestep?
• What should we output at this timestep?

c
x

Feedforward
NNs (FNNs)

RNNs LSTMs

To recap: FNNs (from Tuesday) take the current input and learn to output some hidden vector.

RNNs take the current input and previous hidden vector, and output a new hidden vector.

LSTMs take the current input, previous hidden vector, and previous context
vector, and output a new hidden vector and new context vector.

LSTM Gradients

• Backpropagating through
the context vector does
not require us to multiply by

!

• We just need elementwise
multiplications with the
forget gate .

• Much easier to avoid
exploding or vanishing
gradients.

c

W

f

LSTM Gradients

The gradient still diminishes over time, but in a more controlled way, and by less
than in RNNs.

What can LSTMs do?

• Encode a sentence

• Sentence classification

• Encode pairs of sentences

• Paraphrase identification, natural language inference

• Predict a label for each word in the sentence

• POS tagging, language modeling

• Translation, generation

Blue: positive

This shows the activations of a dimension of the context vector (“cell”).

Red: negative

Deep RNNs

h1
t−2

Where did they

W1

W2

W3

h2
t−2

h3
t−2

h1
t−1

h2
t−1

h3
t−1

h1
t

h2
t

h3
t

V

ŷt

W1

W2

W3

W1

W2

W3

Instead of a single hidden layer, you can have
many.

This allows the model to learn more abstract
representations of the inputs.

In practice, I would strongly recommend doing this
if your dataset is big enough!

The Future Matters

I was ______ happy that I got to see them before they left.

I was ______ already when they arrived.

I was ________.

The Future Matters

I was ___________.

I was ______ happy that I got to see them before they left.

I was ______ already when they arrived.

interested

very

there

The Future Matters

I was ______ happy that I got to see them before they left.

I was ______ already when they arrived.

Clearly, access to future tokens helps us predict a token more accurately.

So far, our RNNs have gone just left-to-right.

Idea: let’s do a left-to-right pass and a right-to-left pass.

very

there

interestedI was ___________.

Bidirectional RNNs

h→
t−1

Where did they

W→

h←
t−1h→

t h←
th→

t+1 h←
t+1

V

ŷt

Where did they

W→ W→ W← W← W←

ht−1 ht ht+1

Take one RNN that goes left-to-right and one that goes right-to-left .→ ←
For a given timestep, concatenate their hidden states: ht = h→

t ⊕ h←
t

These work well for sequence classification, but aren’t good for generation.

Batching

h2
t−2

The dog ate

W1

h2
t−1 h2

t

W1 W1

h1
t−2

Where did they

W1

h1
t−1 h1

t

W1 W1

We can parallelize across examples (the batch size).b

However, we cannot parallelize across timesteps.
Every timestep depends on previous timesteps.

Other RNNs

• You may encounter Gated Recurrent Units (GRUs)

• Similar in spirit to LSTMs, but fewer gates and more computationally efficient

• Also addresses the vanishing/exploding gradients problem

• Performs similarly to LSTMs in many cases

Summary

• Recurrent neural networks (RNNs) allow us to consider way more prior context
than n-grams.

• Our first neural language models!

• Vanilla RNN LMs are better than n-gram LMs, but they have issues: most notably,
vanishing/exploding gradients and bad long-distance dependency tracking

• LSTMs improve upon the vanilla RNN via the extensive use of gates

• RNN LMs can learn surprisingly sophisticated concepts

Homework 1

• You will implement (at least) two types of language model: an n-gram, an RNN, and (optionally, for extra
credit) an LSTM.

• Don’t leave this to the last minute!

• Recommended schedule:

• Week 1: BPE tokenizer, n-gram language model

• Week 2: RNN LM (and optionally, LSTM)

• +2 days: conceptual questions about embeddings

• Recommendations:

• Use Google Colab for debugging. GPUs will speed things up.

• When debugging, keep the number of epochs, vocab size, and dataset size low. Increase these later
to get your final scores.

