Neural Sequence Modeling

Part 2: Recurrent Neural Networks and LSTMs

Aaron Mueller
CAS CS 505: Introduction to Natural Language Processing
Spring 2026
Boston University

Overview of Concepts

RNNSs: A neural architecture for sequential data @

Autoregressive: A system that recursively makes
predictions given its own outputs

LSTMs: An effective form of RNN that makes
extensive use of gates

Gate: A learned mechanism for filtering or transmitting
information

Backpropagation through time (BPTT): @
A method for updating weights in

recurrent models

p(+) p(-) p(neut) Output probabilities
*

Recall our text Yi) (Y2 Y3 Y [1x3] Outputlayer softmax
classifier from last ,

, [dX3] weights
time: U

. h [ixd;] Hidden layer

W [dxdy] weights

X [1Xd] Inputlayer

pooled embedding
embedding for “dessert”
embedding for “was” NXxd .
embedding for “great” embeddings
E E V|xd E matrix

shared across words

[O/oo.oooo dO] |, \fgr \ | "

00---f -~ 00 XXeX XXXe) A 902 [V| NX|V] one-hot vectors
1 ([O0e Qe @ OO)

00 0 00

“great” = V902

“desseart” = V3 e 0 |

dessert was great Input words

If we replace the classifier
output layer with a
vocabulary-sized output
layer, we now have a
language model!

A Fixed-window Neural Language Model

p(w~aardvark|w,;,w,,,W,;) p(w=do|..)p(wt=fish|) p(wt=zebra|

\\ /
output layer y [@,. o @ @ @ @} IXIV
softmax AN lt:iif-

/o dpX|Vi
hidden layer h @ IXdy
embedding layer e 1XNd

E 1s shared

across words 117/~ \\ V|xd

,;tj’fr:::ii':',,}Efffﬁ?""" 451) \|V
LAY Ny,

Input layer
one-hot 00 0 /" 1 00
vectors “all” = V992 “the” = V451
for all the ? Z
Wi.3 Wi Wi-1 Wi

)

N-gram LMs vs. Fixed-window Neural LMs

® Improvements over n-gram LMs:

® No sparsity problem

® O(n) memory requirements, rather than

O(exp(n))

® Remaining problems:
® Fixed window is too small
® Enlarging window enlarges the weight matrix
® Window can never be too large!

® Fach embedding uses different rows of the
weights. We don’t share weights across the
window positions.

p(wt=aardvark|wt 3 Wi 5, W, 1) p(wt—do|)p(wt—fish|) p(wt—zebral)

outg:ftuig(ery [@ . @ @} 1X|V]

dy X[V

hidden layer h {@ @J Ixdy,

embedding layer e

E is shared
across words

Input layer
one-hot
vectors

Long-distance dependencies are common.

The keys to the cabinet are on the table.

Yesterday, Kathy went to the store. She bought some
groceries, paper towels, ... Today, Kathy went to school.

Q: Where did Kathy go yesterday?

Translate this to French: The black cat near the mat sat on the hat.
Le chat noir pres du tapis s'est assis sur le chapeau.

How can we predict more than one token?

1. We need to add some sort of “memory” to handle long-range dependencies.

Let's use a separate vector (context vector) to keep track of context.

2. We also need a model that’s capable of tracking information across potentially
very long documents.

[et’s use a recurrent architecture.

Recurrent Neural Networks (RNNs)

Elman, 1990
o o
o
Xt | > ht > yt
___/
__/ ___/

The input layer x, feeds into a hidden layer h, (like before).

However, the hidden layer has a recurrent connection that depends on the
current token as well as the hidden layer from the previous timestep h,_;.

This hidden state acts as a sort of memory or context vector.

iy The RNN Cell

> h.t - >
— T _ outputy
previous h ™~ +—— next h
> >
---------- > R
(previousc) L—— (next c)
Input X

Each recurrence takes the previous hidden state h,_;,
previous context vector ¢,_;, and current input x..

It outputs the next hidden state h,, context vector ¢, and an output token y.

Recurrent Neural Networks (RNNs)

¢ Vi)
N
C h)

(C . 1) (C X4)
Each token’s hidden representation h, is a function
of the current token’s embedding X, and the ht — g(Uht_1 + Wxt)
previous hidden state h,_;.
Note: the weight matrices U, V, W are the same Y = f(Vhf)

for each timestep 1!

Unrolling an RNN

C Y3)
\ v /
) (_hs)

Uses of RNNs

Sequence labeling: predict a label for every element in a sequence.
DT NN VBD JJ

r 1ttt 1

the movie was great

Encode: encode the entire sequence into a representation, and use that for some

downstream purpose. - predict sentiment (matmul + softmax)

;I_.I;I_.;I_.I;I< translate
paraphrase/compress
the movie was great

[Figures from Greg Durrett.]

RNN Language Models

* Recall the chain rule for computing sequence probabilities:

p(Wp W,, ---,Wn) = HP(Wi | W<i)
=1

* For n-grams, we had to use a limited context window of n — 1.

* For RNNs, the hidden state could potentially include information from any
timestep; thus, there is technically no limit to how long our context can be!

(ht2)

W

€i-2

The hidden state has size d; this is a hyperparameter.

RNN Language Models

(ht-1)

W

(8t-1)

%)
Vv
(ht)

W

(et)

e, = X,
ht — g(Uht—l + WXt)
y, = softmax(Vh)

Here, V (the “unembedding” matrix) is learned independently of
L. Optionally, you can tie the embeddings by making V the
transpose of E. This allows you to learn fewer parameters.

RNN Language Models

The probability of a token given prior context is: Index of the token in

Probability distribution | k]/ the probability distribution
t

over tokens

The probability of a sequence is the product of its tokens’ conditional probabilities:

p(Wp Woy ooy Wn) = Hyi[wi]
=1

As per usual, we actually work in log space:

powp Wy, .o w,) =) log §i{w]
i=1

Training an RNN

* Much like in classification, we can use a cross-entropy loss to train an RNN:

LC E(yta yt) — = Z Yt[w]log yt[W]

wevV

e Again, we assume that p(y,[w]) is always 1, so this simplifies to:

LC E(yta yt) = — log yt[wt+1]

* |n other words, the cross-entropy loss at a given timestep ¢ is the negative log-
probability of the correct next token.

Training an RNN

Get a dataset D consisting of documents.

* Each document consists of sequences of words (wy, ..., wp).

Feed into RNN, compute probability distribution over tokens y,
for each timestep f.

Compute the cross entropy loss at every position.

Average the loss across timesteps:
T

A 1 A
LC E(yta Y) = ? Z — logy, w1

=1

The Forward Pass

Do forward inference for each timestep, accumulating the loss at each step.

Next word long and thanks for all
| | | | | L
Loss — log 'glongJ N 10 Jand| |—log ?;ithanks . 10 Jfor — 1()gA Z‘, T \ LI Z Lek
t=1
y
Teacher forcing:
Sormaxover (oho) (ol) (ol) (adhe) (ol) rooordlens o bt
VhT h T T T the model predicted,
RNN - . d d - give it the correct
prior context when

predicting the next

Q Q - token.

and thanks for

Input e Q
Embeddings

So

@l I

Backpropagation Through Time (BPTT)

Backpropagation is straightforward when we only have one prediction to worry
about.

However, RNNs make a bunch of predictions, each of which depends on the
previous timestep. How does backpropagation work in this case?

Basically, we must backpropagate starting from the final prediction, and work our
way backwards to the first timestep. This is called backpropagation through
time (BPTT).

* This means there is now an O(n) factor in backprop’s time and space
complexity.

1.

Backpropagation Through Time (BPTT)

Do forward inference for each
timestep, accumulating the loss at
each step.

Process the sequence inreverse, m n =
computing required gradients
step-by-step.

-If the sequence is short enough, we
can do this all in parallel!

-If not, we can break it into chunks and
use each chunk as a separate training
example.

RNNs vs. N-grams

/ Perplexity
Model # words | PPL”| WER Word Error Rate
KN5 LM 200K | 336 | 164
KN5 LM + RNN 90/2 200K | 271 | 154
KN5 LM M 287 | 15.1
KN5 LM + RNN 90/2 IM 225 | 14.0
KN5 LM 6.4M | 221 | 135
KN5 LM + RNN 250/5 6.4M 156 | 11.7

Recurrent neural networks significantly outperform 5-gram LMs with Kneser-Ney
smoothing!

The Unreasonable Effectiveness of RNNs

Train an RNN on =100MB
of Wikipedia data:

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
MOdel |eal’nS tO Opeﬂ emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
and Close pa rentheses c.>f Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
COITeCt'Y' Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungaryl]],
that is sympathetic to be to the [[Punjab Resolution]]

(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery

(fa ke Ya hOO ||nk) was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]

http.//karpathy.github.io/2015/05/21/rnn-effectiveness/

http://www.apple.com

The Unreasonable Effectiveness of RNNs

The same RNN learns <page>
to produce correctly <title>Antichrist</title>
formatted XML <id>865</id>

<revision>
<id>15900676</id>
<timestamp>2002-08-03T18:14:12Z2</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>
</contributor>
<minor />
<comment>Automated conversion</comment>
<text xml:space="preserve">#REDIRECT [[Christianity]]</text>
</revision>

</page>

What Can You Fit in a Word Vector?
(%)

e We have one vector h to handle the entire v
input. What can it hold?
* Word meaning: definitely! ho)|u| (hq)|u|(Ch)

* Phrase meaning: very well, but not
perfectly

(et)

* Sentence meaning: iffy

* Document meaning: probably not vy ' h
ou cantcCram e

meaning of a whole %&!
$ing sentence into a

* We're doing significantly better, but can’t single $&!*ing vector!”

effectively handle super long context quite yet. —Raymond Mooney, 2014

Why RNNs Are Cursed

Next word long and thanks for all

Loss | log}glong . 104 Yand| |—log ??l:hanks = IOg‘l\ Yfor | | = log{ Ja| - % XT: Ler
y =1
Sotmaover (o) (o) () (el) (o)
ocabulary Vh T h T T T T
RNN - > > >

p o 8 8 s s s

So long and thanks for

In reality, it is very hard to make use of distant context.

It's also very hard to learn well with long sequences: the same matrix is
getting multiplied over and over and over...

Vanishing and Exploding Gradients, Revisited

* |magine you have a sequence that’s f tokens long. W and h are a weight matrix
and hidden state, respectively.

* by and p, are the upper bound of the norms of these objects.

e The partial derivative will be (ﬁWﬁh)t_k

* When tis large, this can get huge (explode) or shrink to nothing (vanish)

In both cases, nothing of importance is learned. If vanishing, updates to the

parameters become O. If exploding, the parameters are jumping around too much
and too fast to be useful.

Long Short-term Memory Networks (LSTMs)

Motivation

* |dea: Instead of learning what to keep or forget at the same time, let’s divide
context management into two subproblems:

1. Forget information that is no longer needed

2. Add information that is likely to be needed later

* This is less about the architecture and more about context management.

* Let's implement this functionality via gates (implemented as additional weights).

Long Short-term Memory Networks (LSTMs)

First, the forget gate decides what
information to delete:

f,=o(Uh_ +Wx) k=c_ Of,

We decide what information
to extract:

8 = G(Ughl‘—l + ngt)

The add gate selects information to add ©t-1
to the current context:

;=8 01 hy 1 —

We add the modified context to get the
new context vector:

Ctzjt‘l'kt

Finally, the output gate decides what
information is needed for the current

hidden state: o,=oc(Uh_,+Wx)
ht — Ot ® tanh(ct)

* You can think of the ¢ as
being your long-term
memory: what should we
hold onto for later?

* You can think of h as the
short-term memory: what'’s
needed to predict the very
next token?

Long Short-term Memory Networks (LSTMs)

7
¥

=)Ca)

(o)

»Ct

~h;

Understanding LSTM Gates

Forget gate:

fiT ft:a(Wf’Mt—l?mt] + by)

O

he—1
Lt

Based on the current input, how much of the previous hidden state can we throw away?

Understanding LSTM Gates

Input gate:
it =0 (Wi-lhe—1, 2] + ;)

ét — taﬂh(WC'[ht_l,ZEt] -+ bc)

How much of the information in the current input should be incorporated into the
context vector?

Understanding LSTM Gates

Context vector update:

ftT ztr-b()% Cr = fe x Cp—1 + 14 * C;

Update the context vector: forget whatever the forget gate said to, add whatever the
input gate said to.

Understanding LSTM Gates

Output gate:
Ot =— U(Wo [ht—laajt] 1 bo)

O X tanh (Ct)

<
|

Decide what to output: run the context vector through a tanh, run the hidden state
through an output gate, and multiply these all together to get the next hidden state.

Understanding LSTM Gates

ar e Thef, 1, 0 gates control information flow across time

Gh] [0 - . g/C’ Is the main computation of new information
j

Basically, at each timestep, we're computing:
« How much can we ignore old values of ¢ for this timestep?

« How much should we incorporate the input X at this timestep?
- What should we output at this timestep?

/
e tanh

X

Feedforward RNNSs | STMs
NNs (FNNs)

To recap: FNNs (from Tuesday) take the current input and learn to output some hidden vector.
RNNs take the current input and previous hidden vector, and output a new hidden vector.

LSTMs take the current input, previous hidden vector, and previous context
vector, and output a new hidden vector and new context vector.

* Backpropagating through

the context vector ¢ does
not require us to multiply by

W!

* We just need elementwise
multiplications with the

forget gate f.
* Much easier to avoid

exploding or vanishing
gradients.

C

t-1

LSTM Gradients

/

i
g},@ tavnh
'
O O — h

LSTM Gradients

L

similar gradient <- » >
. L

)

© 2

The gradient still diminishes over time, but in a more controlled way, and by less
than in RNNs.

§<- gradient

A

What can LSTMs do?

\

ﬂ

the movie was great

Encode a sentence

* Sentence classification
Encode pairs of sentences

* Paraphrase identification, natural language inference
Predict a label for each word in the sentence

* POS tagging, language modeling

Translation, generation

VISUALIZING AND UNDERSTANDING RECURRENT
NETWORKS

Andrej Karpathy* Justin Johnson™ Li Fei-Fei
Department of Computer Science, Stanford University
{karpathy, jcjohns, feifeili}@cs.stanford.edu

VISUALIZING AND UNDERSTANDING RECURRENT
NETWORKS

Andrej Karpathy* Justin Johnson™ Li Fei-Fel
Department of Computer Science, Stantord University
{karpathy, jcjohns, feifeili}@cs.stanford.edu

Cell that turns on inside quotes:

i

This shows the activations of a dimension of the context vector (“cell”).

Blue: positive

Red: negative

VISUALIZING AND UNDERSTANDING RECURRENT
NETWORKS

Andrej Karpathy* Justin Johnson* Li Fei-Fei
Department of Computer Science, Stanford University
{karpathy, jcjohns, feifeili}@cs.stanford.edu

Cell sensitive to position in line:

The sole importance of ¢t
st nlainly and indu

h EIEESEROENON S Eh'e Berezina lies in the ffact
DEEEEEOHSVEEDNONVed the Tallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
1ine of action--the one Kutuzov and the general mass of the army
demanded--namely, simpl to follow the enemy up. The French crowd fled
R R AR e e asng speed and all its energy was directed ©tO
It fled like a wounded animal and it was impossible
TS awas s hown not so much by the arrangements 1t
as by what took place at the bridges. When the bridges
ed soldiers, people from Moscow and women with children
E
t

~ 0 <

peaching its ¢
o) block 1ts
made for cros
broke down, u
who were with
pressed forwa
surrender .

B RS aNEeeeal L =-carried on by vis inertiae--

0a
at
in
ar
th r

d nEeboats and into the ice-covered water and didiirEs

=0 3Q I

r

VISUALIZING AND UNDERSTANDING RECURRENT
NETWORKS

Andrej Karpathy™ Justin Johnson* Li Fei-Fei
Department of Computer Science, Stanford University

{karpathy, jcjohns, feifeili}@cs.stanford.edu

Cell that is sensitive to the depth of an expression:
#ifdef CONFIG_AUDITSYSCALL
static 1inline 1Nt AL e S S) e S L A T e R A S S S o = I S A

© 1 < AUDIT_BITMASK
] & classes|[class]

VISUALIZING AND UNDERSTANDING RECURRENT
NETWORKS

Andrej Karpathy* Justin Johnson™ Li Fei-Fel
Department of Computer Science, Stantord University
{karpathy, jcjohns, feifeili}@cs.stanford.edu

A large portion of cells are not easily interpretable. Here is a typical example:

lter Fileld'siistring Frepres -ior
: rincg id *®Ebufp, siize_t| Mremain, siize_t| Leh)

Deep RNNs

Instead of a single hidden layer, you can have
many.

This allows the model to learn more abstract
representations of the inputs.

In practice, | would strongly recommend doing this
If your dataset is big enough!

3
h 2

h! ,

Where

= O

Hig)

h3

—1 h

h!

[—

h

JEEAER
EEER

they

The Future Matters

| was

| was happy that | got to see them before they left.

| was already when they arrived.

The Future Matters

| was interested

| was _very happy that | got to see them before they left.

| was there glready when they arrived.

The Future Matters

| was interested

| was _very happy that | got to see them before they left.

| was there glready when they arrived.

So far, our RNNs have gone just left-to-right.
Clearly, access to future tokens helps us predict a token more accurately.

ldea: let’s do a left-to-right pass and a right-to-left pass.

Bidirectional RNNs

-
I

Take one RNN that goes left-to-right — and one that goes right-to-left «.

For a given timestep, concatenate their hidden states: h, = h;” @ h;~

These work well for sequence classification, but aren’t good for generation.

Batching

We can parallelize across b examples (the batch size).

However, we cannot parallelize across timesteps.
Every timestep depends on previous timesteps.

h, h;,
h,_, -1

Other RNNs

* You may encounter Gated Recurrent Units (GRUs)

* Similar in spirit to LSTMs, but fewer gates and more computationally efficient

* Also addresses the vanishing/exploding gradients problem

* Performs similarly to LSTMs in many cases

<t = 0 (Wz ' [ht—laxt])
r{ =0 (Wr ' [ht—laxt])
h, = tanh (W - [ry x hy_q, 24])

) ht:(l—Zt)*ht_l—l—Zt*ilt

Summary

Recurrent neural networks (RNNs) allow us to consider way more prior context
than n-grams.

* Qur first neural language models!

Vanilla RNN LMs are better than n-gram LMs, but they have issues: most notably,
vanishing/exploding gradients and bad long-distance dependency tracking

LSTMs improve upon the vanilla RNN via the extensive use of gates

RNN LMs can learn surprisingly sophisticated concepts

Homework1

* You will implement (at least) two types of language model: an n-gram, an RNN, and (optionally, for extra
credit) an LSTM.

* Don't leave this to the last minute!

* Recommended schedule:
* Week 1: BPE tokenizer, n-gram language model
* Week 2: RNN LM (and optionally, LSTM)

* +2 days: conceptual questions about embeddings

®* Recommendations:
* Use Google Colab for debugging. GPUs will speed things up.

* When debugging, keep the number of epochs, vocab size, and dataset size low. Increase these later
to get your final scores.

