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Overview of Concepts

RNNs: A neural architecture for sequential data

Autoregressive: A system that recursively makes 
predictions given its own outputs

LSTMs: An effective form of RNN that makes 
extensive use of gates

Backpropagation through time (BPTT): 
A method for updating weights in 
recurrent models

Gate: A learned mechanism for filtering or transmitting 
information



Recap: A Neural Text Classifier
Recall our text 
classifier from last 
time:



A Fixed-window Neural Language Model

If we replace the classifier 
output layer with a 
vocabulary-sized output 
layer, we now have a 
language model!



N-gram LMs vs. Fixed-window Neural LMs

• Improvements over n-gram LMs: 

• No sparsity problem 

•  memory requirements, rather than 
 

• Remaining problems: 

• Fixed window is too small 

• Enlarging window enlarges the weight matrix 

• Window can never be too large! 

• Each embedding uses different rows of the 
weights. We don’t share weights across the 
window positions.

O(n)
O(exp(n))



Long-distance dependencies are common.

The keys to the cabinet are on the table.

Yesterday, Kathy went to the store. She bought some 
groceries, paper towels, … Today, Kathy went to school.

Q: Where did Kathy go yesterday?

Translate this to French: The black cat near the mat sat on the hat. 
Le chat noir près du tapis s’est assis sur le chapeau.



How can we predict more than one token?

1. We need to add some sort of “memory” to handle long-range dependencies. 
 
 
 
 

2. We also need a model that’s capable of tracking information across potentially 
very long documents.

Let’s use a separate vector (context vector) to keep track of context.

Let’s use a recurrent architecture.



Recurrent Neural Networks (RNNs)
Elman, 1990

The input layer  feeds into a hidden layer  (like before).xt ht

However, the hidden layer has a recurrent connection that depends on the 
current token as well as the hidden layer from the previous timestep .ht−1

This hidden state acts as a sort of memory or context vector.



The RNN Cell

Each recurrence takes the previous hidden state , 
previous context vector , and current input .

ht−1
ct−1 xt

It outputs the next hidden state , context vector , and an output token .ht ct ̂y



Recurrent Neural Networks (RNNs)

ht = g(Uht−1 + Wxt)

yt = f(Vht)

Each token’s hidden representation  is a function 
of the current token’s embedding  and the 
previous hidden state .

ht
xt

ht−1

Note: the weight matrices , ,  are the same 
for each timestep !

U V W
t



Unrolling an RNN



Uses of RNNs
Sequence labeling: predict a label for every element in a sequence.

Encode: encode the entire sequence into a representation, and use that for some 
downstream purpose.

[Figures from Greg Durrett.]



RNN Language Models

• Recall the chain rule for computing sequence probabilities: 

• For n-grams, we had to use a limited context window of . 

• For RNNs, the hidden state could potentially include information from any 
timestep; thus, there is technically no limit to how long our context can be!

n − 1

p(w1, w2, …, wn) =
n

∏
i=1

p(wi |w<i)



RNN Language Models

ht = g(Uht−1 + Wxt)

ŷt = softmax(Vht)

The hidden state has size ; this is a hyperparameter.d

Here,  (the “unembedding” matrix) is learned independently of 
. Optionally, you can tie the embeddings by making  the 

transpose of . This allows you to learn fewer parameters.

V
E V

E

et = Ext



RNN Language Models

ŷt[k]

The probability of a sequence is the product of its tokens’ conditional probabilities:

The probability of a token given prior context is:

p(w1, w2, …, wn) =
n

∏
i=1

ŷi[wi]

Index of the token in 
the probability distribution

Probability distribution 
over tokens

As per usual, we actually work in log space:

p(w1, w2, …, wn) =
n

∑
i=1

log ŷi[wi]



Training an RNN

• Much like in classification, we can use a cross-entropy loss to train an RNN: 

• Again, we assume that  is always 1, so this simplifies to: 

• In other words, the cross-entropy loss at a given timestep  is the negative log-
probability of the correct next token.

p(yt[w])

t

LCE(ŷt, yt) = − ∑
w∈V

yt[w]log ŷt[w]

LCE(ŷt, yt) = − log ŷt[wt+1]



Training an RNN

1. Get a dataset  consisting of documents. 

• Each document consists of sequences of words . 

2. Feed into RNN, compute probability distribution over tokens   
for each timestep . 

3. Compute the cross entropy loss at every position. 

4. Average the loss across timesteps:

D
(w1, …, wT)

̂yt
t

LCE(ŷt, yt) =
1
T

T

∑
t=1

− log ŷt[wt+1]



Do forward inference for each timestep, accumulating the loss at each step.

The Forward Pass

Teacher forcing: 
Regardless of what 
the model predicted, 
give it the correct 
prior context when 
predicting the next 
token.



Backpropagation Through Time (BPTT)

• Backpropagation is straightforward when we only have one prediction to worry 
about. 

• However, RNNs make a bunch of predictions, each of which depends on the 
previous timestep. How does backpropagation work in this case? 

• Basically, we must backpropagate starting from the final prediction, and work our 
way backwards to the first timestep. This is called backpropagation through 
time (BPTT). 

• This means there is now an  factor in backprop’s time and space 
complexity.

O(n)



Backpropagation Through Time (BPTT)

1. Do forward inference for each 
timestep, accumulating the loss at 
each step. 
 

2. Process the sequence in reverse, 
computing required gradients 
step-by-step. 

- If the sequence is short enough, we 
can do this all in parallel! 

- If not, we can break it into chunks and 
use each chunk as a separate training 
example.



RNNs vs. N-grams

Recurrent neural networks significantly outperform 5-gram LMs with Kneser-Ney 
smoothing!

Word Error Rate

Perplexity



The Unreasonable Effectiveness of RNNs

Train an RNN on ≈100MB 
of Wikipedia data:

(fake Yahoo link)

Model learns to open 
and close parentheses 
correctly!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://www.apple.com


The Unreasonable Effectiveness of RNNs

The same RNN learns 
to produce correctly 
formatted XML.



What Can You Fit in a Word Vector?

• We have one vector  to handle the entire 
input. What can it hold? 

• Word meaning: definitely! 

• Phrase meaning: very well, but not 
perfectly 

• Sentence meaning: iffy 

• Document meaning: probably not 

• We’re doing significantly better, but can’t 
effectively handle super long context quite yet.

h

“You can't cram the 
meaning of a whole %&!
$ing sentence into a 
single $&!*ing vector!”

—Raymond Mooney, 2014



Why RNNs Are Cursed

In reality, it is very hard to make use of distant context.

It’s also very hard to learn well with long sequences: the same matrix is 
getting multiplied over and over and over…



Vanishing and Exploding Gradients, Revisited

• Imagine you have a sequence that’s  tokens long.  and  are a weight matrix 
and hidden state, respectively. 

•  and  are the upper bound of the norms of these objects. 

• The partial derivative will be  

• When  is large, this can get huge (explode) or shrink to nothing (vanish) 

In both cases, nothing of importance is learned. If vanishing, updates to the 
parameters become 0. If exploding, the parameters are jumping around too much 
and too fast to be useful.

t W h

βW βh

(βW βh)t−k

t



Long Short-term Memory Networks (LSTMs)

• Idea: Instead of learning what to keep or forget at the same time, let’s divide 
context management into two subproblems: 

1. Forget information that is no longer needed 

2. Add information that is likely to be needed later 

• This is less about the architecture and more about context management. 

• Let’s implement this functionality via gates (implemented as additional weights).

Motivation



Long Short-term Memory Networks (LSTMs)
First, the forget gate decides what 
information to delete:

ft = σ(Uf ht−1 + Wf xt) kt = ct−1 ⊙ ft

We decide what information 
to extract:

gt = σ(Ught−1 + Wgxt)

The add gate selects information to add 
to the current context:

it = σ(Uiht−1 + Wixt)
jt = gt ⊙ it

We add the modified context to get the 
new context vector:

ct = jt + kt

Finally, the output gate decides what 
information is needed for the current 
hidden state: ot = σ(Uoht−1 + Woxt)

ht = ot ⊙ tanh(ct)



Long Short-term Memory Networks (LSTMs)

• You can think of the  as 
being your long-term 
memory: what should we 
hold onto for later? 

• You can think of  as the 
short-term memory: what’s 
needed to predict the very 
next token?

c

h



Understanding LSTM Gates

Based on the current input, how much of the previous hidden state can we throw away?

Forget gate:



Understanding LSTM Gates

How much of the information in the current input should be incorporated into the 
context vector?

Input gate:



Understanding LSTM Gates

Update the context vector: forget whatever the forget gate said to, add whatever the 
input gate said to.

Context vector update:



Understanding LSTM Gates

Decide what to output: run the context vector through a tanh, run the hidden state 
through an output gate, and multiply these all together to get the next hidden state.

Output gate:



Understanding LSTM Gates

• The , ,  gates control information flow across time 

• /  is the main computation of new information

f i o
g C̃

gf i
o

Basically, at each timestep, we’re computing: 
•  How much can we ignore old values of  for this timestep? 
•  How much should we incorporate the input  at this timestep? 
•  What should we output at this timestep?

c
x



Feedforward 
NNs (FNNs)

RNNs LSTMs

To recap: FNNs (from Tuesday) take the current input and learn to output some hidden vector.

RNNs take the current input and previous hidden vector, and output a new hidden vector.

LSTMs take the current input, previous hidden vector, and previous context 
vector, and output a new hidden vector and new context vector.



LSTM Gradients

• Backpropagating through 
the context vector  does 
not require us to multiply by 

! 

• We just need elementwise 
multiplications with the 
forget gate . 

• Much easier to avoid 
exploding or vanishing 
gradients.

c

W

f



LSTM Gradients

The gradient still diminishes over time, but in a more controlled way, and by less 
than in RNNs.



What can LSTMs do?

• Encode a sentence 

• Sentence classification 

• Encode pairs of sentences 

• Paraphrase identification, natural language inference 

• Predict a label for each word in the sentence 

• POS tagging, language modeling 

• Translation, generation





Blue: positive

This shows the activations of a dimension of the context vector (“cell”).

Red: negative









Deep RNNs

h1
t−2

Where did they

W1

W2

W3

h2
t−2

h3
t−2

h1
t−1

h2
t−1

h3
t−1

h1
t

h2
t

h3
t

V

ŷt

W1

W2

W3

W1

W2

W3

Instead of a single hidden layer, you can have 
many.

This allows the model to learn more abstract 
representations of the inputs.

In practice, I would strongly recommend doing this 
if your dataset is big enough!



The Future Matters

I was ______ happy that I got to see them before they left.

I was ______ already when they arrived.

I was ________.



The Future Matters

I was ___________.

I was ______ happy that I got to see them before they left.

I was ______ already when they arrived.

interested

very

there



The Future Matters

I was ______ happy that I got to see them before they left.

I was ______ already when they arrived.

Clearly, access to future tokens helps us predict a token more accurately.

So far, our RNNs have gone just left-to-right.

Idea: let’s do a left-to-right pass and a right-to-left pass.

very

there

interestedI was ___________.



Bidirectional RNNs

h→
t−1

Where did they

W→

h←
t−1h→

t h←
th→

t+1 h←
t+1

V

ŷt

Where did they

W→ W→ W← W← W←

ht−1 ht ht+1

Take one RNN that goes left-to-right  and one that goes right-to-left .→ ←
For a given timestep, concatenate their hidden states: ht = h→

t ⊕ h←
t

These work well for sequence classification, but aren’t good for generation.



Batching

h2
t−2

The dog ate

W1

h2
t−1 h2

t

W1 W1

h1
t−2

Where did they

W1

h1
t−1 h1

t

W1 W1

We can parallelize across  examples (the batch size).b

However, we cannot parallelize across timesteps. 
Every timestep depends on previous timesteps.



Other RNNs

• You may encounter Gated Recurrent Units (GRUs) 

• Similar in spirit to LSTMs, but fewer gates and more computationally efficient 

• Also addresses the vanishing/exploding gradients problem 

• Performs similarly to LSTMs in many cases



Summary

• Recurrent neural networks (RNNs) allow us to consider way more prior context 
than n-grams. 

• Our first neural language models! 

• Vanilla RNN LMs are better than n-gram LMs, but they have issues: most notably, 
vanishing/exploding gradients and bad long-distance dependency tracking 

• LSTMs improve upon the vanilla RNN via the extensive use of gates 

• RNN LMs can learn surprisingly sophisticated concepts



Homework 1

• You will implement (at least) two types of language model: an n-gram, an RNN, and (optionally, for extra 
credit) an LSTM. 

• Don’t leave this to the last minute! 

• Recommended schedule: 

• Week 1: BPE tokenizer, n-gram language model 

• Week 2: RNN LM (and optionally, LSTM) 

• +2 days: conceptual questions about embeddings 

• Recommendations: 

• Use Google Colab for debugging. GPUs will speed things up. 

• When debugging, keep the number of epochs, vocab size, and dataset size low. Increase these later 
to get your final scores.


