
Aaron Mueller
CAS CS 505: Introduction to Natural Language Processing

Spring 2026
Boston University

Neural Sequence Modeling
Part 1: Neural Networks and Embeddings

Admin

• HW0 is due tonight, Feb. 3 at 11:59pm!

• HW1 has been released! It will be due on Feb. 19, in just over 2 weeks.

• We will have a homework 1 help session on Feb. 17 at your lab section! (Note:
this is a Tuesday, but BU will be operating on a Monday schedule.)

• We are also still available at office hours.

• Thursday’s (2/5) lecture will be pre-recorded—no in-person class. I will take
questions on Piazza, in class the following Tuesday, and at office hours.

Overview of Concepts

Neural networks are stacks of layers of
perceptrons.

Perceptrons are small linear classifiers.

Backpropagation is how we compute the
gradients of neural network parameters.

Embeddings are dense vector representations
of tokens.

Skip-grams are embeddings learned via
a context classifier.

Problems with n-grams

p(wj | like to eat) =
C(like to eat wj)

C(like to eat)

Sparsity: What if “like to eat ”
never appeared in the training set?

wj

Storage: Need to store counts of all
possible -grams. Requires
memory!

n O(exp(n)) Independence: No sharing of
information across similar prefixes.

Why neural networks?

• Statistical approaches like n-grams are easy to understand and implement. But
they can require a lot of human effort and don’t generalize well.

• Logistic regression works well, but it requires us to engineer our own features.

• These days, neural networks are all the rage. Here are some reasons why:

• They learn the “features” by themselves.

• We have architectures that are great at handling large quantities of data.

• They generalize well to many tasks when we have a ton of data.

Perceptrons

Recall logistic regression:

This is similar to the foundational unit of neural networks: a perceptron.

̂y = σ(w ⋅ x + b)
Outputs a probability

̂y = {1 if w ⋅ x + b > 0
0 if w ⋅ x + b ≤ 0

Discrete; hard step function

Decision Boundaries

If we plot the feature vector, we can show exactly where the perceptron draws
the line between classes.

The Weakness of Perceptrons

• Perceptrons just draw a line through the feature space between classes.

• But what if we can’t draw a clean line between them?

• This is a fundamental weakness of perceptrons: they can’t handle situations like
this.

XOR
function

Non-linearities

• Non-linearities are essential. We apply them after every layer of perceptrons.

• A sigmoid is one kind of non-linearity. In practice, they aren’t super common.
More common and better functions include:

̂y = σ(wx + b)

tanh(z) =
ez − e−z

ez + e−z
ReLU(z) = max(0,z)

1. Why do we need
non-linearities?

2. Why are these
better than the
sigmoid?

We’ll come back
to these questions.

Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights:

h1 = σ(w1x + b1)
h2 = σ(w2h + b2)

…
We’ll refer to the vector of
concatenated ’s as .h h

We’ll refer to the stacked ’s
as the weight matrix .

w
W

Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights:

h = σ(Wx + b)

…
We’ll refer to the vector of
concatenated ’s as .h h

We’ll refer to the stacked ’s
as the weight matrix .

w
W

We’ll call this a layer of perceptrons.

Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights:

h = σ(Wx + b) We can then apply another
layer of perceptrons on
top of !h

z = Uh
This is the hidden layer.
We do not directly see it,
because it is not the input
nor the output; it is
hidden inside the network
of perceptrons.

This is the output layer.

By analogy, is the
input layer.

x

Return of the Softmax

Recall the softmax:

We needed this to turn unnormalized logits into probabilities. We’ll apply this to the
output layer to get probabilities over outputs.

softmax(zi) =
exp(zi)

∑n
j=1 exp(zj)

Thus, the full definition of our multi-layer
neural network is:

h = σ(Wx + b)
z = Uh

y = softmax(z)

Imagine we did not have any non-linearities:

We can rewrite this as:

Why non-linearities?

h = Wx + b1

y = Uh + b2

y = U(Wx + b1) + b2
= UWx + Ub1 + b2

= W′￼x + b′￼

Thus, any n-layer linear
neural network has equal
expressive power to a 1-layer
neural network.

This is not true if we include
non-linearities: expressive
power increases with >1
layer!

Why non-linearities?
 before non-linearity:x (after a non-linearity):h

Can’t draw a line to separate classes. Now, we can draw a line to separate them!

Text Classification with MLPs

Let’s return to the sentiment classification task using hand-crafted features:

Training a Neural Network

Recall how we trained our logistic regression classifiers with gradient descent. We
train neural networks in an intuitively similar way:

1. Make a prediction using the neural network.

2. Use the cross-entropy loss to compare the prediction to the correct answer .

3. Compute the gradient of the weights, and use these to update the weights.

̂y

y

This only works for the last layer!

How do we compute the gradients for
earlier layers?

∂LCE
∂wj

= − (y − ̂y)xj

Backpropagation

• To update the weights, we must do a forward pass and a backward pass.

• The forward pass just means getting a prediction from the network given the
inputs:

Forward Pass

d = 2b

e = a + d

L = ce

This structure is called a computation graph.

Backpropagation

• We compute the gradients using
the chain rule of derivatives.

Backward Pass

∂L
∂c

= e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

Backpropagation
Example

Backpropagation in a Neural Network
Forward Pass

h = ReLU(W1x + b1)

z = W2h + b2

y = σ(z)

Forward pass:

The weights we need
to update are shown
in teal.

Backpropagation in a Neural Network
Backward Pass

∂L
∂z

=
∂L
∂a

∂a
∂z

LCE = − [y log a + (1 − y)log(1 − a)]

∂L
∂a

= − ((y
∂ log a

∂a) + (1 − y)(∂ log(1 − a)
∂a))

∂L
∂a

= − (y
a

+
y − 1
1 − a)

The derivative of is .σ(x) σ(x)(1 − σ(x))
∂a
∂z

= a(1 − a)
We repeat this, taking all partial derivatives
for each edge in this graph, until we have
the gradients for all teal nodes w.r.t. .L

Derivatives for Common Non-linear Functions

dσ
dx

= σ(x)(1 − σ(x))

dtanh
dx

= 1 − tanh2(x)

dReLU
dx

= {0 if x < 0
1 if x ≥ 0

Think about what will happen if you
keep multiplying these functions by
themselves over and over, like you
would in a neural network.

Vanishing Gradients

Why are sigmoids considered not as good as ReLUs?

Imagine you stack a bunch of sigmoids in a multi-layer perceptron:

The gradient for requires multiplying the derivatives of sigmoids to each other.

- These derivatives are usually small, so their products get smaller and smaller
with more and more layers, until the gradient just… becomes 0. Learning stops.

h(1)

h(1) = σ(W(1)x + b1)
h(2) = σ(W(2)h(1) + b2)
y = softmax(Uh(2))

Vanishing Gradients

Imagine instead we had used tanh or ReLU:

The gradient for requires multiplying the derivatives of sigmoids to each other.

- These derivatives will always be 0 or 1!

h(1)

h(1) = ReLU(W(1)x + b1)
h(2) = ReLU(W(2)h(1) + b2)
y = softmax(Uh(2))

ReLU(z) = max(0,z)

Practical Considerations

• Neural networks have a lot of hyperparameters to tune, like learning rates and
number of training steps. Tuning these is essential for good performance.

• High LR/Low training steps: the network never converges to a good solution
(underfitting), or even diverges

• Low LR: the network takes too long to converge

• As networks get more powerful, we need to worry more about preventing
overfitting.

• You will often encounter regularization methods that help prevent
overfitting.

Implementation Details

class SimpleNN(nn.Module):
 def __init__(self, input_size, num_classes):
 super(SimpleNN, self).__init__()
 # Fully connected layers
 self.fc1 = nn.Linear(input_size, 128)
 self.relu = nn.ReLU() # Activation function
 self.fc2 = nn.Linear(128, num_classes)

 def forward(self, x):
 x = self.fc1(x)
 x = self.relu(x)
 x = self.fc2(x)
 return x

model = SimpleNN()

2. Define Loss function and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

Sample dummy data (input X, target y)
inputs = torch.randn(1, 10)
targets = torch.tensor([1])

1. Forward pass: compute predicted y
outputs = model(inputs)

2. Compute loss
loss = criterion(outputs, targets)
print(f'Loss: {loss.item()}')

3. Backward pass: compute gradients
loss.backward()

4. Optimizer step: update weights
optimizer.step()

PyTorch makes doing backpropagation
super easy.

Dropout

• With some probability, we can zero out parts of the network during training
to prevent overfitting.

• (Use full network at test time.)

• One line in PyTorch:

nn.Dropout(0.2)

“During every forward pass,
randomly zero out a component
with probability 0.2.”

Summary

• Neural networks are a bunch of perceptrons stacked next to and on top of each
other, with non-linearities between layers.

• Way more powerful than logistic regression or perceptrons on their own.

• Training neural networks requires backpropagation, which is just the chain rule
of derivatives.

• This is a way of computing the gradients in multi-layer neural networks.

• Otherwise, we still use gradient descent, like before.

Embeddings and
Word Meanings

Beyond Hand-crafted Features

• So far, we’ve manually computed feature vectors or hand-crafted some features
for our models to use.

• This is kind of annoying, and doesn’t scale well to large datasets.

• Can we have the neural network learn representations of tokens by itself? What
would these look like?

• Answer: We can! These token representations are called embeddings.

What does a word mean?

Odor (noun): A strong smell.

Definition
Part of speech

Usually means a bad smell.

Connotation

scent
smell

odorous

bad

odor
smelly

good
fragrance

A word can often be
defined in terms of
other words:

We want our token representations to be such that more similar tokens
are closer to each other.

The Distributional Hypothesis

• The distributional hypothesis:

• Similar words will appear in similar contexts

• Thus, a word’s distribution tells you a lot about its relationship to other
words.

“You shall know a word by the company it keeps.”

In my band, we have a guitarist, drummer, and blorpfa.
She was a blorpfa until last year, when she hurt her foot.
Do you know any blorpfa?

Dan Firth

Count-based Embeddings

This is our token representation for “cherry”

Count-based Embeddings

Here’s an example from Wikipedia:

More similar words
end up pointing
in similar directions!

Most of these numbers
will be zero, so this is
a sparse representation
of word meaning.

word2vec

• Idea: instead of counting co-occurrences, we’ll train a classifier that computes
how likely word will be to co-occur with another word.

• The task doesn’t matter; the weights of this classifier will be our word
representations.

c

Probability that will co-occur with c w
p(+ |w, c)Classifier computes:

Word
Context

Here, the context window is of size 2:

p(+ |w, c) = σ(w ⋅ c)
Learn and s.t. the likelihood
of the training data is maximized.

w c

Learning word2vec

• This way of training embeddings is called skip-gram
with negative sampling (SGNS).

• The “negative sampling” part refers to the above.

• We sample negative words per positive word. Here, .k k = 2

Data

Non-co-occurring
words, randomly
sampled from lexicon

Learning word2vec
Loss

L(w, c+, c−) = − log[p(+ |w, c+)
k

∏
i=1

p(− |w, c−)]

= − [log p(+ |w, c+) +
k

∑
i=1

p(− |w, c−)]

= − [log σ(c+ ⋅ w) +
k

∑
i=1

log σ(−c− ⋅ w)]

 Number of negative
examples per positive example
k :

So basically, we want to maximize the dot product of words with context words
they occur with, and minimize the dot product of words with context words they
do not occur with.

After learning,
our word embedding
will be .wi + ci

Connections to Matrix Factorization

|V |

|V | =word pair
counts

word
vecs

|V |

d |V |

dcontext vecs

• Skip-gram objective corresponds nearly exactly to factoring this matrix!

• Only if we use negative sampling

Mij =
p(wi, cj)

p(wi)p(cj)

Other Word Vectors

• GloVe (Global Vectors) is based on global corpus statistics

• Based on probability ratios from the word-word co-occurrence matrix

• fasttext is an extension of word2vec that better handles unknown words and sparsity

• Uses subword modeling. E.g., “where” is represented as <where>, plus

• Where we have an embedding for each of the above, and “where”’s embedding is
the sum of these subword embeddings.

 <wh, whe, her, ere, re>

Using Embeddings in Neural Networks

Given our pre-trained word embedding matrix, we can retrieve each embedding
using a series of one-hot vector multiplications:

Embedding matrix

Embedding

One-hot vector
(token index in
vocabulary V)

Where E usually comes from word2vec, GloVe, or some pre-trained embedding.

- You can also learn E alongside the rest of the neural network. Tends to
require a lot of data.

Back to sentiment
classification, but
without hand-crafted
features this time:

Evaluating Embeddings

• We want similar words to have similar embeddings to each other.

• How do we compute word similarity? We use
the cosine similarity:

cos(v, w) =
v ⋅ w

|v | |w |

Basically the angle between
the two word vectors.

• GloVe is best in very controlled settings, but depends on the hyperparameters.

• (In practice, these distinctions are small enough to not matter much in reality.)

[Levy et al., 2015]

Word Vector Analogies

• Apple is to tree as grape is to __________

• Why does this work?

• (grape - apple) captures differences in
context, while tree specifies the type of
object in the analogy

_____ = tree + (grape - apple)

Consistent gender direction in GloVe Captures comparative/superlative
morphology, too!

If we compute embeddings from three different time periods, we can view the
change in the meanings of particular words!

Social Considerations

• Word embeddings are known to capture gender and racial biases.

• Bolukbasi et al. [2016]: the closest occupation to
“computer programmer - man + woman” is homemaker.

• Embeddings are often more biased than the actual text statistics [Zhao et al.,
2017; Etharayajh et al., 2019] and actual labor statistics [Garg et al., 2018]

• The cosine similarity of traditionally African American names with negative words
is higher than that of traditionally European American names with negative words

• A lot of research tries to remove these properties from embeddings by applying some
transformation to the learned embeddings [e.g., Zhao et al., 2017; 2018]. These
generally do not fully remove bias [Gonen & Goldberg, 2019].

Preview: Contextual Embeddings

• All of the embeddings discussed today assume that we can use the exact same
embedding for a given word in any context.

• But words often have many meanings depending on context:

• Later, we’ll discuss ways of taking this context into account in our embeddings.

I went to the park
I will park my car

The industrial park was abandoned

You can park your bag by the door

Summary

• Many methods now exist that allow us to automatically embed a token into a
vector representation.

• Lots of pretrained embeddings work well in practice, and they often capture
interesting high-level trends and analogies.

• Next time: overcoming short-context limitations with recurrent neural networks
(RNNs)

