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Admin

® HWO is due tonight, Feb. 3 at 11:59pm!

® HW1 has been released! It will be due on Feb. 19, in just over 2 weeks.

® \We will have a homework 1 help session on Eeb. 17 at your lab section! (Note:
this is a Tuesday, but BU will be operating on a Monday schedule.)

® \\e are also still available at office hours.

® Thursday’s (2/5) lecture will be pre-recorded—no in-person class. | will take
questions on Piazza, in class the following Tuesday, and at office hours.




Perceptrons are small linear classifiers.

Neural networks are stacks of layers of
perceptrons.

Backpropagation is how we compute the
gradients of neural network parameters.

Embeddings are dense vector representations
of tokens.

Skip-grams are embeddings learned via
a context classifier.

Overview of Concepts
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Problems with n-grams

Sparsity: What if “like to eat wj"
never appeared in the training set?

C(like to eat w;)

| like t t) =
plw;llike to ea) C(like to eat)

Storage: Need to store counts of all

possible n-grams. Requires O(exp(n)) Independence: No sharing of
memory! information across similar prefixes.



Why neural networks?

e Statistical approaches like n-grams are easy to understand and implement. But
they can require a lot of human effort and don’t generalize well.

* Logistic regression works well, but it requires us to engineer our own features.

* These days, neural networks are all the rage. Here are some reasons why:
* They learn the “features” by themselves.
* \We have architectures that are great at handling large quantities of data.

* They generalize well to many tasks when we have a ton of data.



Perceptrons

Recall logistic regression: N
Outputs a probability

y=0(w-X+ D)

This is similar to the foundational unit of neural networks: a perceptron.

1 fw-x+b>0
0 fw-x+b<0

Discrete; hard step function

<>
1




Decision Boundaries

Linear Decision Boundary

® Class1
® Class?2

Feature 2

-1 0 1 2 3 4
Feature 1

If we plot the feature vector, we can show exactly where the perceptron draws
the line between classes.



The Weakness of Perceptrons

<22, 2 2
XOR 1 O, O 1 1 o 1 1 O
function ™ hN ~
. R ?
0 O O—% . 0O *— 0 O *—
0 1 0 1 0 1
a) Xl AND X2 b) Xl OR X2 C) Xl XOR X2

* Perceptrons just draw a line through the feature space between classes.
* But what if we can’t draw a clean line between them?

* This is a fundamental weakness of perceptrons: they can’t handle situations like
this.



Non-linearities

y = o(WX + b)

* Non-linearities are essential. We apply them after every layer of perceptrons.

* A sigmoid is one kind of non-linearity. In practice, they aren’t super common.
More common and better functions include:

- e — o7 cal U ) 1. Why do we need
an = e = , i ”
() e (z) = max(0,z) non-linearities?
1.0 10
2. Why are these
0.5 > better than the
sigmoid?
0.0 0
iy s We’ll come back
j to these questions.
-1.0 -10

—10 -5 0 5 10 —10 -5 0 5 10
Z Z



Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights:

hy = o(W X+ b;) X, W

h, = o(w,h + b,) &g{
@

We'll refer to the vector of
concatenated /’s as h.

/
We'll refer to the stacked w’s “np————

as the weight matrix W.



Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights:

h = o(WXx + b)

We’ll call this a layer of perceptrons.




Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights:

h = o(WXx + b) < /4 U We can then apply another
1\. @ layer of perceptrons on
This is the hidden layer. - \ top of h
We do not directly see it, X2 g X *@ 7 = Uh

because it is not the input . ‘ ~t ""

nor the output; it is

. NS ; -
hidden inside the network X g 3 /\ ' This is the output layer.
.

of perceptrons. " @ By analogy, X is the
input layer.




Return of the Softmax

exp(z;)

Recall the softmax: softmax(z) = —;
exp(z;)

j=1

We needed this to turn unnormalized logits into probabilities. We'll apply this to the
output layer to get probabilities over outputs.

X, W U D
\. Thus, the full definition of our multi-layer
A\ > neural network is:
S B
» "" h = (WX + b)

;04;,25 z = Uh

A y = softmax(z)



Why non-linearities?

Imagine we did not have any non-linearities:

h=Wx+b, Thus, any n-layer linear
neural network has equal
y = Uh+Db, expressive power to a 1-layer

neural network.
We can rewrite this as:

y=UWx+b)+b, This is not true it we inqlude
non-linearities: expressive

= UWx+ Ub, + b, power increases with >1

’ / layer!

= Wx + b’



Why non-linearities?

X before non-linearity: h (after a non-linearity):
X2 ]»’12A

11 O 1 O .-~

0 O ‘—>X1 OQ /./—‘ >
0 1 0

7”7

Can’t draw a line to separate classes. Now, we can draw a line to separate them!



Text Classification with MLPs

Let’s return to the sentiment classification task using hand-crafted features:

\

dessert

was

great

J

Input words

%

wordcount
=3

positive lexicon x )

words = 1

count of “no”

=0

) AR
1 F
<3
P <)
=
; ($2) -0
<
X5 @ — p(neut)
X \Y% h U y
[dX1] [dhxd] [dy X1] [3><dh] [3X1]
Input layer  Hidden layer Output layer
d=3 features softmax



Training a Neural Network

Recall how we trained our logistic regression classifiers with gradient descent. We
train neural networks in an intuitively similar way:

1. Make a prediction y using the neural network.

2. Use the cross-entropy loss to compare the prediction to the correct answer Y.

3. Compute the gradient of the weights, and use these to update the weights.

OLCE B . This only works for the last layer!
= — (Y= Y)x;

How do we compute the gradients for
earlier layers?



Backpropagation

Forward Pass

* To update the weights, we must do a forward pass and a backward pass.

* The forward pass just means getting a prediction from the network given the
INnputs:

d = 2b @— &
e=a+d :bzl @ =10

. = ce ¢~

forward pass

This structure is called a computation graph.



Backpropagation

Backward Pass

forward pass

* We compute the gradients using
the chain rule of derivatives.

oL L de od
ob  de od ob
d
=
L_oL de e aL
od oe ad ad oe
downstream local upstream

gradient gradient gradient




Backpropagation

Example
a=3
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Backpropagation in a Neural Network

Forward Pass

Forward pass:

h = ReLU(W,x + b)) N

L = th"‘bz 1
W
y = 0(2) ol

o
W2_2
Bl
° The weights we need

to update are shown
N




Backpropagation in a Neural Network

Backward Pass

oL GL da
0z da oz Wil
wil] ‘
Logp =—yloga+ (1 —y)log(l —a)] .\
oL dloga dlog(l — a) [1]
Py ((y ~ >+(1—y)< . )) 5 i 1[%] @ 26— Ly
9I_ (z Lyl ) o
da a |—a

; L)
The derivative of o(x) is o(x)(1 — o(x)). We repeat this, taking all partial derivatives

g9a _ a(l — a) for each edge in this graph, until we have
07 the gradients for all nodes w.r.t. L.



Derivatives for Common Non-linear Functions

do
— = o(x)(1 — a(x))
dx
Think about what will happen if you
Jtanh , keep multiplying these funqtions by
=1 —tanh"(x) themselves over and over, like you
dx would in a neural network.

drRelLU _JO ifx<o0
dx 1 ifx>0



Vanishing Gradients

Why are sigmoids considered not as good as RelLUs?

Imagine you stack a bunch of sigmoids in a multi-layer perceptron:
h'Y = s(Wx + b))
h(? — U(W(z)h(l) +b,)
y = softmax(Uh®)

The gradient for h(D requires multiplying the derivatives of sigmoids to each other.

- These derivatives are usually small, so their products get smaller and smaller
with more and more layers, until the gradient just... becomes O. Learning stops.



Vanishing Gradients _ _ __

Imagine instead we had used tanh or RelLU: 0 /

h') = ReLUWWx +b)  ~

—10

h(z) — ReLU(W(Z)h(l) n b2) =10 =5 0 5 10
y = softmax(Uh'?)

The gradient for h(D requires multiplying the derivatives of sigmoids to each other.

- These derivatives will always be O or 1!



Practical Considerations

* Neural networks have a lot of hyperparameters to tune, like learning rates and
number of training steps. Tuning these is essential for good performance.

* High LR/Low training steps: the network never converges to a good solution
(underfitting), or even diverges

* Low LR: the network takes too long to converge

* As networks get more powerful, we need to worry more about preventing
overfitting.

* You will often encounter regularization methods that help prevent
overfitting.



Implementation Details

PyTorch makes doing backpropagation
super easy.

class SimpleNN(nn.Module):
def _init_ (self, input_size, num_classes):
super(SimpleNN, self).__init__ ()
# Fully connected layers
self.fcl = nn.Linear(input_size, 128)
self.relu = nn.ReLU() # Activation function
self.fc2 = nn.Linear(128, num_classes)

def forward(self, x):

x = self.fcl(x)

x = self.relu(x)
x = self.fc2(x)

return X

model = SimpleNN()

# 2. Define Loss function and Optimizer
criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), 1lr=0.01)

# Sample dummy data (input X, target y)
inputs = torch.randn(1, 10)
targets = torch.tensor([1])

# 1. Forward pass: compute predicted y
outputs = model(inputs)

# 2. Compute loss
loss = criterion(outputs, targets)
print(f'Loss: {loss.item()}")

# 3. Backward pass: compute gradients
loss.backward()

# 4. Optimizer step: update weights
optimizer.step()



Dropout

* With some probability, we can zero out parts of the network during training
to prevent overfitting.

* (Use full network at test time.)

* One line in PyTorch:

nn.Dropout(0.2)

“During every forward pass, &
ra ndOmly Zero out a CompOnent (a) Standard Neural Net (b) After applying dropout.
with probability 0.2



Summary

* Neural networks are a bunch of perceptrons stacked next to and on top of each
other, with non-linearities between layers.

* Way more powerful than logistic regression or perceptrons on their own.

* Training neural networks requires backpropagation, which is just the chain rule
of derivatives.

* This is a way of computing the gradients in multi-layer neural networks.

* Otherwise, we still use gradient descent, like before.



Embeddings and
Word Meanings




Beyond Hand-crafted Features

* So far, we've manually computed feature vectors or hand-crafted some features
for our models to use.

* This is kind of annoying, and doesn’t scale well to large datasets.

* Can we have the neural network learn representations of tokens by itself? What
would these look like?

* Answer: We can! These token representations are called embeddings.



What does a word mean?

Odor (noun): A strong smell. Usually means a bad smell.

Definition Connotation
Part of speech

fragrance
A word can often be good
defined in terms of odor odorous
other words: scent
smell smelly

bad



cand
y chocolate

cream

‘Sweet juice

honey

beef soup drink

potatoes © «fried

We want our token representations to be such that more similar tokens
are closer to each other.



The Distributional Hypothesis

¢ The distributional hypothesis: “You shall know a word by the company it keeps.”
® Similar words will appear in similar contexts

® Thus, a word’s distribution tells you a lot about its relationship to other
words.

In my band, we have a guitarist, drummer, and blorpfa.
She was a blorpfa until last year, when she hurt her foot.
Do you know any blorpfa?

Dan Firth



Count-based Embeddings

1s traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

This is our token representation for “cherry”

a computer nie
cherry
strawberry 0 0 2
digital 0 1 )
information 1 1 0




Count-based Embeddings

Here's an example from Wikipedia:

aardvark ... computer data result pie sugar
cherry 0 2 8 9 4472 25
strawberry 0 0 0 1 60 19
digital 0 1670 1683 85 5 4
information 0 3325 3082 378 5 13
4000
= information Most of these numbers
_ = 3000— [3982,3325] ' P
More similar words 3 faital will be zero, so th|§ f
end up pointing & 2000—/1683,1670] afsparze representation
in similar directions! o 1000 OT word meaning.

| | | |
1000 2000 3000 4000

data



word2vec

* |dea: instead of counting co-occurrences, we’ll train a classifier that computes
how likely word ¢ will be to co-occur with another word.

* The task doesn’t matter; the weights of this classifier will be our word
representations.

Here, the context window is of size 2:

. lemon, a [tablespoon of apricot jam, a] pinch ...
cl Cc2 W c3 c4
Word
Classifier computes: p( 4 | W, ¢) Context p(+|w,c) =o(w- )

Learn W and ¢ s.t. the likelihood

Probability that ¢ will co-occur with w _ . o
/ of the training data is maximized.



Learning word2vec

Data
positive examples + negative examples -
W Cpos |44 Cneg w Cneg
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where  apricot dear
apricot a apricot coaxial apricot if

Non-co-occurring
words, randomly

sampled from lexicon

* This way of training embeddings is called skip-gram
with negative sampling (SGNS).

* The “negative sampling” part refers to the above.

e We sample k negative words per positive word. Here, k = 2.



Learning word2vec

Loss k : Number of negative
/examples per positive example

k
L(w,c,,c_) =—log [p( + | w, c+)Hp( — |w, c_)]
i=1

k
= — [logp(+ [, + Y p(— |, )]
=1

k
= — llog o(c, - w)+ Z logo(—c_ - w)]
=1
So basically, we want to maximize the dot product of words with context words

they occur with, and minimize the dot product of words with context words they
do not occur with.



( aardvark [eee After learning,

move apricot and jam closer,

ncreasing C . our word embedding
apricot (eeojww| — = < ' .
D ‘ N o will be w; + ¢..
W - N
SN *...apricot jam...”
zebra [eee R ,"\
0 -
( aardvark eee /. . move gpricot and matrix apart
jam [@esC,_ C decreasing C ., - W
C - matrix -]
. - ‘'move apricot and Tolstoy apart

decreasing C "

neg2 .




Connections to Matrix Factorization
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* Skip-gram objective corresponds nearly exactly to factoring this matrix!

* Only if we use negative sampling



Other Word Vectors

* GloVe (Global Vectors) is based on global corpus statistics

* Based on probability ratios from the word-word co-occurrence matrix

* fasttext is an extension of word2vec that better handles unknown words and sparsity

* Uses subword modeling. E.g., “where” is represented as <where>, plus
<wh, whe, her, ere, re>

* Where we have an embedding for each of the above, and “where”’s embedding is
the sum of these subword embeddings.



Using Embeddings in Neural Networks

Given our pre-trained word embedding matrix, we can retrieve each embedding
using a series of one-hot vector multiplications:

3

\Y 3

1 [oo0

0000...0000] X

One-hot vector -~
(token index in
vocabulary V)

M

N

1

d

~___—Embedding

Embedding matrix

Where E usually comes from word2vec, GloVe, or some pre-trained embedding.

- You can also learn E alongside the rest of the neural network. Tends to
require a lot of data.



p(+) p(-) p(neut) Output probabilities
*

Back to sentiment

| f " b A A A
C ?SSI ication, but Y1 Y2) (Y3 Y [1x3] Outputlayer softmax
without hand-crafted s
. v :
features this time: y ! weights
1xd i
@ .. h [ixd;] Hidden layer

W [dXdy]  weights

X [I1Xd] Inputlayer



Evaluating Embeddings

* We want similar words to have similar embeddings to each other.

* How do we compute word similarity? We use
the cosine similarity:

V'-W
COS(V, W) = 5
‘V‘ ‘W‘ °00 = herry

Basically the angle between digital information

the two word vectors.

Dimension 1: ‘pie’

|
500 1000 1500 2000 2500 3000

Dimension 2: ‘computer’



[Levy etal., 2015]

Method WordSim  WordSim  Brunmietal. Radinskyetal. Luongetal. Hillet al.
Similarity Relatedness MEN M. Turk Rare Words  SimLex
PPMI 153 .697 1435 686 462 393
SVD 793 691 178 666 514 432
SGNS 793 685 174 .693 470 438
GloVe 1235 .604 129 632 403 398

* GloVe is best in very controlled settings, but depends on the hyperparameters.

* (In practice, these distinctions are small enough to not matter much in reality.)



Word Vector Analogies

* Appleis to tree as grape is to

~__=tree + (grape - apple)

* Why does this work?

* (grape - apple) captures differences in C5/'Ovme

context, while tree specifies the type of grape
object in the analogy

tree
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Consistent gender direction in GloVe Captures comparative/superlative
morphology, too!



A daft 93Y (1900s)

flaunting sweet
o ) cheerful
tasteful
pleasant
frolicsonm\e
witty ™ gay (1950s)
prignt

Jays isexual

nomosexual

gay (1990s)

lesbian

spread

SOW

seed
SOWS

scatter

broadcast (1900s)

newspapers

broadcast (1850s)

circulated

television

radlo
L broadcast (1990s)

(: solemn
awful (1850s)
mayjestic

adWe

dread ensive

gloomy

norrible

appalliwg terrible
awful (1900s) wonderful
awful (1990s)

- welrd
awrtully

If we compute embeddings from three different time periods, we can view the
change in the meanings of particular words!



Social Considerations

* Word embeddings are known to capture gender and racial biases.

* Bolukbasi et al. [2016]: the closest occupation to
“computer programmer - man + woman” is homemaker.

* Embeddings are often more biased than the actual text statistics [Zhao et al.,
2017; Etharayajh et al., 2019] and actual labor statistics [Garg et al., 2018}

* The cosine similarity of traditionally African American names with negative words
is higher than that of traditionally European American names with negative words

* A |ot of research tries to remove these properties from embeddings by applying some
transformation to the learned embeddings [e.g., Zhao et al., 2017; 2018]. These
generally do not fully remove bias [Gonen & Goldberg, 2019].



Preview: Contextual Embeddings

* All of the embeddings discussed today assume that we can use the exact same
embedding for a given word in any context.

* But words often have many meanings depending on context:

| went to the park
| will park my car
The industrial park was abandoned

You can park your bag by the door

e |Later, we’ll discuss ways of taking this context into account in our embeddings.



Summary

® Many methods now exist that allow us to automatically embed a token into a
vector representation.

® | ots of pretrained embeddings work well in practice, and they often capture
interesting high-level trends and analogies.

® Next time: overcoming short-context limitations with recurrent neural networks
(RNNSs)



