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Admin

• HW0 is due tonight, Feb. 3 at 11:59pm! 
 

• HW1 has been released! It will be due on Feb. 19, in just over 2 weeks. 

• We will have a homework 1 help session on Feb. 17 at your lab section! (Note: 
this is a Tuesday, but BU will be operating on a Monday schedule.) 

• We are also still available at office hours. 

• Thursday’s (2/5) lecture will be pre-recorded—no in-person class. I will take 
questions on Piazza, in class the following Tuesday, and at office hours.



Overview of Concepts

Neural networks are stacks of layers of 
perceptrons.

Perceptrons are small linear classifiers.

Backpropagation is how we compute the 
gradients of neural network parameters.

Embeddings are dense vector representations 
of tokens.

Skip-grams are embeddings learned via 
a context classifier.



Problems with n-grams

p(wj | like to eat) =
C(like to eat wj)

C(like to eat)

Sparsity: What if “like to eat ” 
never appeared in the training set?

wj

Storage: Need to store counts of all 
possible -grams. Requires  
memory!

n O(exp(n)) Independence: No sharing of 
information across similar prefixes.



Why neural networks?

• Statistical approaches like n-grams are easy to understand and implement. But 
they can require a lot of human effort and don’t generalize well. 

• Logistic regression works well, but it requires us to engineer our own features. 

• These days, neural networks are all the rage. Here are some reasons why: 

• They learn the “features” by themselves. 

• We have architectures that are great at handling large quantities of data. 

• They generalize well to many tasks when we have a ton of data.



Perceptrons

Recall logistic regression: 

This is similar to the foundational unit of neural networks: a perceptron.

̂y = σ(w ⋅ x + b)
Outputs a probability

̂y = {1 if w ⋅ x + b > 0
0 if w ⋅ x + b ≤ 0

Discrete; hard step function



Decision Boundaries

If we plot the feature vector, we can show exactly where the perceptron draws 
the line between classes.



The Weakness of Perceptrons

• Perceptrons just draw a line through the feature space between classes. 

• But what if we can’t draw a clean line between them? 

• This is a fundamental weakness of perceptrons: they can’t handle situations like 
this.

XOR 
function



Non-linearities

• Non-linearities are essential. We apply them after every layer of perceptrons. 

• A sigmoid is one kind of non-linearity. In practice, they aren’t super common. 
More common and better functions include:

̂y = σ(wx + b)

tanh(z) =
ez − e−z

ez + e−z
ReLU(z) = max(0,z)

1. Why do we need 
non-linearities? 
 
2. Why are these 
better than the 
sigmoid?

We’ll come back 
to these questions.



Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights:

h1 = σ(w1x + b1)
h2 = σ(w2h + b2)

…
We’ll refer to the vector of 
concatenated ’s as .h h

We’ll refer to the stacked ’s 
as the weight matrix .

w
W



Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights:

h = σ(Wx + b)

…
We’ll refer to the vector of 
concatenated ’s as .h h

We’ll refer to the stacked ’s 
as the weight matrix .

w
W

We’ll call this a layer of perceptrons.



Stacking Perceptrons

We can use multiple perceptrons in parallel, each with their own weights: 

h = σ(Wx + b) We can then apply another 
layer of perceptrons on 
top of !h

z = Uh
This is the hidden layer. 
We do not directly see it, 
because it is not the input 
nor the output; it is 
hidden inside the network 
of perceptrons.

This is the output layer.

By analogy,  is the 
input layer.

x



Return of the Softmax

Recall the softmax: 

We needed this to turn unnormalized logits into probabilities. We’ll apply this to the 
output layer to get probabilities over outputs.

softmax(zi) =
exp(zi)

∑n
j=1 exp(zj)

Thus, the full definition of our multi-layer 
neural network is:

h = σ(Wx + b)
z = Uh

y = softmax(z)



Imagine we did not have any non-linearities: 

We can rewrite this as:

Why non-linearities?

h = Wx + b1

y = Uh + b2

y = U(Wx + b1) + b2
= UWx + Ub1 + b2

= W′￼x + b′￼

Thus, any n-layer linear 
neural network has equal 
expressive power to a 1-layer 
neural network.

This is not true if we include 
non-linearities: expressive 
power increases with >1 
layer!



Why non-linearities?
 before non-linearity:x  (after a non-linearity):h

Can’t draw a line to separate classes. Now, we can draw a line to separate them!



Text Classification with MLPs

Let’s return to the sentiment classification task using hand-crafted features:



Training a Neural Network

Recall how we trained our logistic regression classifiers with gradient descent. We 
train neural networks in an intuitively similar way: 

1. Make a prediction  using the neural network. 

2. Use the cross-entropy loss to compare the prediction to the correct answer . 

3. Compute the gradient of the weights, and use these to update the weights.

̂y

y

This only works for the last layer! 
 
How do we compute the gradients for 
earlier layers?

∂LCE
∂wj

= − (y − ̂y)xj



Backpropagation

• To update the weights, we must do a forward pass and a backward pass. 

• The forward pass just means getting a prediction from the network given the 
inputs:

Forward Pass

d = 2b

e = a + d

L = ce

This structure is called a computation graph.



Backpropagation

• We compute the gradients using 
the chain rule of derivatives.

Backward Pass

∂L
∂c

= e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b



Backpropagation
Example



Backpropagation in a Neural Network
Forward Pass

h = ReLU(W1x + b1)

z = W2h + b2

y = σ(z)

Forward pass:

The weights we need 
to update are shown 
in teal.



Backpropagation in a Neural Network
Backward Pass

∂L
∂z

=
∂L
∂a

∂a
∂z

LCE = − [y log a + (1 − y)log(1 − a)]

∂L
∂a

= − ((y
∂ log a

∂a ) + (1 − y)( ∂ log(1 − a)
∂a ))

∂L
∂a

= − ( y
a

+
y − 1
1 − a )

The derivative of  is .σ(x) σ(x)(1 − σ(x))
∂a
∂z

= a(1 − a)
We repeat this, taking all partial derivatives 
for each edge in this graph, until we have 
the gradients for all teal nodes w.r.t. .L



Derivatives for Common Non-linear Functions

dσ
dx

= σ(x)(1 − σ(x))

dtanh
dx

= 1 − tanh2(x)

dReLU
dx

= {0 if x < 0
1 if x ≥ 0

Think about what will happen if you 
keep multiplying these functions by 
themselves over and over, like you 
would in a neural network.



Vanishing Gradients

Why are sigmoids considered not as good as ReLUs? 

Imagine you stack a bunch of sigmoids in a multi-layer perceptron: 

The gradient for  requires multiplying the derivatives of sigmoids to each other. 

- These derivatives are usually small, so their products get smaller and smaller 
with more and more layers, until the gradient just… becomes 0. Learning stops.

h(1)

h(1) = σ(W(1)x + b1)
h(2) = σ(W(2)h(1) + b2)
y = softmax(Uh(2))



Vanishing Gradients

Imagine instead we had used tanh or ReLU: 

The gradient for  requires multiplying the derivatives of sigmoids to each other. 

- These derivatives will always be 0 or 1!

h(1)

h(1) = ReLU(W(1)x + b1)
h(2) = ReLU(W(2)h(1) + b2)
y = softmax(Uh(2))

ReLU(z) = max(0,z)



Practical Considerations

• Neural networks have a lot of hyperparameters to tune, like learning rates and 
number of training steps. Tuning these is essential for good performance. 

• High LR/Low training steps: the network never converges to a good solution 
(underfitting), or even diverges 

• Low LR: the network takes too long to converge 

• As networks get more powerful, we need to worry more about preventing 
overfitting. 

• You will often encounter regularization methods that help prevent 
overfitting.



Implementation Details

class SimpleNN(nn.Module): 
    def __init__(self, input_size, num_classes): 
        super(SimpleNN, self).__init__() 
        # Fully connected layers 
        self.fc1 = nn.Linear(input_size, 128) 
        self.relu = nn.ReLU() # Activation function 
        self.fc2 = nn.Linear(128, num_classes) 

    def forward(self, x): 
        x = self.fc1(x) 
        x = self.relu(x) 
        x = self.fc2(x) 
        return x

model = SimpleNN() 

# 2. Define Loss function and Optimizer 
criterion = nn.CrossEntropyLoss() 
optimizer = optim.SGD(model.parameters(), lr=0.01) 

# Sample dummy data (input X, target y) 
inputs = torch.randn(1, 10) 
targets = torch.tensor([1]) 

# 1. Forward pass: compute predicted y 
outputs = model(inputs) 

# 2. Compute loss 
loss = criterion(outputs, targets) 
print(f'Loss: {loss.item()}') 

# 3. Backward pass: compute gradients 
loss.backward() 

# 4. Optimizer step: update weights 
optimizer.step()

PyTorch makes doing backpropagation 
super easy.



Dropout

• With some probability, we can zero out parts of the network during training 
to prevent overfitting. 

• (Use full network at test time.) 

• One line in PyTorch:

nn.Dropout(0.2)

“During every forward pass, 
randomly zero out a component 
with probability 0.2.”



Summary

• Neural networks are a bunch of perceptrons stacked next to and on top of each 
other, with non-linearities between layers. 

• Way more powerful than logistic regression or perceptrons on their own. 

• Training neural networks requires backpropagation, which is just the chain rule 
of derivatives. 

• This is a way of computing the gradients in multi-layer neural networks. 

• Otherwise, we still use gradient descent, like before.



Embeddings and 
Word Meanings



Beyond Hand-crafted Features

• So far, we’ve manually computed feature vectors or hand-crafted some features 
for our models to use. 

• This is kind of annoying, and doesn’t scale well to large datasets. 

• Can we have the neural network learn representations of tokens by itself? What 
would these look like? 

• Answer: We can! These token representations are called embeddings.



What does a word mean?

Odor (noun): A strong smell.

Definition
Part of speech

Usually means a bad smell.

Connotation

scent
smell

odorous

bad

odor
smelly

good
fragrance

A word can often be 
defined in terms of 
other words:



We want our token representations to be such that more similar tokens 
are closer to each other.



The Distributional Hypothesis

• The distributional hypothesis: 

• Similar words will appear in similar contexts 

• Thus, a word’s distribution tells you a lot about its relationship to other 
words.

“You shall know a word by the company it keeps.”

In my band, we have a guitarist, drummer, and blorpfa.
She was a blorpfa until last year, when she hurt her foot.
Do you know any blorpfa?

Dan Firth



Count-based Embeddings

This is our token representation for “cherry”



Count-based Embeddings

Here’s an example from Wikipedia:

More similar words 
end up pointing 
in similar directions!

Most of these numbers 
will be zero, so this is 
a sparse representation 
of word meaning.



word2vec

• Idea: instead of counting co-occurrences, we’ll train a classifier that computes 
how likely word  will be to co-occur with another word. 

• The task doesn’t matter; the weights of this classifier will be our word 
representations.

c

Probability that  will co-occur with c w
p( + |w, c)Classifier computes:

Word
Context

Here, the context window is of size 2:

p( + |w, c) = σ(w ⋅ c)
Learn  and  s.t. the likelihood 
of the training data is maximized.

w c



Learning word2vec

• This way of training embeddings is called skip-gram 
with negative sampling (SGNS). 

• The “negative sampling” part refers to the above. 

• We sample  negative words per positive word. Here, .k k = 2

Data

Non-co-occurring 
words, randomly 
sampled from lexicon



Learning word2vec
Loss

L(w, c+, c−) = − log[p( + |w, c+)
k

∏
i=1

p( − |w, c−)]

= − [log p( + |w, c+) +
k

∑
i=1

p( − |w, c−)]

= − [log σ(c+ ⋅ w) +
k

∑
i=1

log σ(−c− ⋅ w)]

 Number of negative 
examples per positive example
k :

So basically, we want to maximize the dot product of words with context words 
they occur with, and minimize the dot product of words with context words they 
do not occur with.



After learning, 
our word embedding 
will be .wi + ci



Connections to Matrix Factorization

|V |

|V | =word pair 
counts

word 
vecs

|V |

d |V |

dcontext vecs

• Skip-gram objective corresponds nearly exactly to factoring this matrix! 

• Only if we use negative sampling

Mij =
p(wi, cj)

p(wi)p(cj)



Other Word Vectors

• GloVe (Global Vectors) is based on global corpus statistics 

• Based on probability ratios from the word-word co-occurrence matrix 

• fasttext is an extension of word2vec that better handles unknown words and sparsity 

• Uses subword modeling. E.g., “where” is represented as <where>, plus 

• Where we have an embedding for each of the above, and “where”’s embedding is 
the sum of these subword embeddings.

 <wh, whe, her, ere, re>



Using Embeddings in Neural Networks

Given our pre-trained word embedding matrix, we can retrieve each embedding 
using a series of one-hot vector multiplications:

Embedding matrix

Embedding

One-hot vector 
(token index in 
vocabulary V)

Where E usually comes from word2vec, GloVe, or some pre-trained embedding. 

- You can also learn E alongside the rest of the neural network. Tends to 
require a lot of data.



Back to sentiment 
classification, but 
without hand-crafted 
features this time:



Evaluating Embeddings

• We want similar words to have similar embeddings to each other. 

• How do we compute word similarity? We use 
the cosine similarity:

cos(v, w) =
v ⋅ w

|v | |w |

Basically the angle between 
the two word vectors.



• GloVe is best in very controlled settings, but depends on the hyperparameters. 

• (In practice, these distinctions are small enough to not matter much in reality.)

[Levy et al., 2015]



Word Vector Analogies

• Apple is to tree as grape is to __________ 

• Why does this work? 

• (grape - apple) captures differences in 
context, while tree specifies the type of 
object in the analogy

_____ = tree + (grape - apple)



Consistent gender direction in GloVe Captures comparative/superlative 
morphology, too!



If we compute embeddings from three different time periods, we can view the 
change in the meanings of particular words!



Social Considerations

• Word embeddings are known to capture gender and racial biases. 

• Bolukbasi et al. [2016]: the closest occupation to 
“computer programmer - man + woman” is homemaker. 

• Embeddings are often more biased than the actual text statistics [Zhao et al., 
2017; Etharayajh et al., 2019] and actual labor statistics [Garg et al., 2018] 

• The cosine similarity of traditionally African American names with negative words 
is higher than that of traditionally European American names with negative words 

• A lot of research tries to remove these properties from embeddings by applying some 
transformation to the learned embeddings [e.g., Zhao et al., 2017; 2018]. These 
generally do not fully remove bias [Gonen & Goldberg, 2019].



Preview: Contextual Embeddings

• All of the embeddings discussed today assume that we can use the exact same 
embedding for a given word in any context. 

• But words often have many meanings depending on context: 

• Later, we’ll discuss ways of taking this context into account in our embeddings.

I went to the park
I will park my car

The industrial park was abandoned

You can park your bag by the door



Summary

• Many methods now exist that allow us to automatically embed a token into a 
vector representation. 

• Lots of pretrained embeddings work well in practice, and they often capture 
interesting high-level trends and analogies. 

• Next time: overcoming short-context limitations with recurrent neural networks 
(RNNs)


