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Admin

• HW0 is due this coming Tuesday, Feb. 3! 

• There are two Gradescope submissions: one for your code, and one for your 
written answers. 

• You should upload your homeworks individually. 

• Optional last-minute homework help session! This will happen at your Monday 
lab section on Feb. 2. 

• Come with questions! This will basically be office hours++.



Overview of Concepts
An n-gram is an ordered list of tokens.

A language model is a system that 
produces probabilities over sequences 
of tokens.

We use the chain rule of probabilities to 
break sequence probabilities into a 
series of conditional continuation 
probabilities.

Smoothing, interpolation, and backoff 
allow LMs to gracefully handle unseen 
token sequences.

A Markov assumption allows us to 
ignore distant context.



Why would you want to assign probability to text?

• Translation: 

• Speech recognition: 

• Autocomplete:

p(he drove to the restaurant) ≫ p(he flew to the restaurant)

p(NLP systems recognize speech) ≫ p(In elpy systems, wreck a nice beach)

p(drawing is fun) ≫ p(drawing is JsonObject)



A Brief History of Language Modeling

• 1910s: N-grams 

• 1940s: (Cross-)entropy 

• 1950s: Chomsky, context-free grammars 

• 1980s-1990s: Recurrent neural networks, LSTMs 

• 2000s: Neural language models 

• 2010s - present: Transformers, large language models 
 

Today, we’ll start with the simplest language model: n-grams.



Language Models

A language model is a system that assigns a probability to a sequence of tokens:

p(x1, x2, …, xn)

Using the chain rule, we can break this down into a product of conditional 
next-token probabilities:

p(x1, x2, …, xn) =
n

∏
i=1

p(xt |x<t)

Thus, a language model is a system that produces probability distributions over next tokens 
given prior context.



Reminder: The Chain Rule

• Recall the definition of conditional probabilities: 

• We can add arbitrarily many variables to this equation: 

• In general:

p(B |A) =
p(A, B)

p(A)
p(A, B) = p(A)p(B |A)Equivalently:

p(A, B, C, D) = p(A)p(B |A)p(C |A, B)p(D |A, B, C)

p(x1, …, xn) = p(x1)p(x2 |x1)…p(xn |x1, …, xn−1)



Prefix/Context

Applying the Chain Rule

p(w1w2…wn) = ∏
i

p(wi |w1w2…wi−1)

p(The water was remarkably clear) =

p(The) × p(water |The) × p(was |The water)

× p(remarkably |The water was)

× p(clear |The water was remarkably)



Estimating Sequence Probabilities

• Let’s try to count and divide: 
 
 
 

• How likely are you to have seen this entire sentence in a corpus? 

• Many sentences you hear/read have never been uttered before! 

• But we really want to avoid . 

• To handle this, we will make a Markov assumption.

p = 0

p(Maine|I like to vacation in) =
C(I like to vacation in Maine)

C(I like to vacation in)



Markov Assumption

• Simplifying assumption: 

• Or maybe: 

• So basically, we assume we can ignore distant context. 

• A Markov assumption holds that the future state of a system 
depends solely on its current state, regardless of its history.

p(Maine | I like to vacation in) ≈ p(Maine |vacation in)

Andrei Markov

p(Maine | I like to vacation in) ≈ p(Maine | in)



• More generally: 

• So each component of the product is approximated as:

Markov Assumption

p(w1w2…wn) ≈ ∏
i

p(wi |wi−k…wi−1)

p(wi |w1w2…wi−1) ≈ p(wi |wi−k…wi−1)



n-grams

Cats like to eat salmon.

Unigrams (1-grams): Bigrams (2-grams): Trigrams (3-grams):

Cats

like

to

eat

salmon

.

(Cats, like)

(like, to)

(to, eat)

(eat, salmon)

(salmon, .)

(Cats, like, to)

(like, to, eat)

(like, to, eat)

(eat, salmon, .)



A Unigram Language Model

• A unigram is an n-gram where . 

• (It’s just a token probability.) 

• These probabilities come from training on a dataset :

n = 1

D

p(w1w2…wn) ≈ ∏
i

p(wi)

How can we generate text from this model?

p(wi) =
C(wi)
|D |

token frequency

number of tokens in dataset



A Bigram Language Model

p(w1w2…wn) ≈ ∏
i

p(wi |wi−1)

• We can estimate bigram probabilities with maximum likelihood estimation (MLE)

p(wi |wi−1) =
C(wi−1, wi)

∑w′￼
C(wi−1, w′￼) ≡ C(wi−1, wi)

C(wi−1) Relative frequency



Example

p(wi |wi−1) =
C(wi−1, wi)

C(wi−1)

<s> I am Sam </s>
<s> Sam I am </s>
<s> Do you like green eggs and ham? </s>

p(I |<s>) =
1
3

= 0.33

p(</s> |Sam) =
1
2

= 0.5

p(Sam |<s>) = ?

p(Sam |am) = ?

p(eggs | like) = ?

p(Sam | I) = ?

MLE



Example

p(wi |wi−1) =
C(wi−1, wi)

C(wi−1)

<s> I am Sam </s>
<s> Sam I am </s>
<s> Do you like green eggs and ham? </s>

p(I |<s>) =
1
3

= 0.33

p(</s> |Sam) =
1
2

= 0.5

p(Sam |<s>) =
1
3

= 0.33

p(Sam |am) =
1
2

= 0.5

p(eggs | like) =
0
1

= 0.0

p(Sam | I) =
0
2

= 0.0

MLE



Generating from a Language Model

• Prefix: “students opened their” 

• In greedy decoding, we always pick the token 
with the highest probability: 

• In sampling, we randomly pick a token 
according to its probability

wt = arg max
w

p(wt |w<t)



Generating Shakespeare

These look better the higher our n is, so let’s train higher-order n-gram models!



A Bigger Example

The Berkeley Restaurant Project corpus:

can you tell me about any good cantonese restaurants close by

tell me about chez panisse

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

Notice how sparse 
this distribution is.



We normalize row-wise to get bigram probabilities:



The Probability of a Sequence of n-grams

• We can estimate the probability of a sequence via a product of n-gram 
probabilities: 

• This probability is very close to 0—as are most sentence probabilities. 

• These probabilities get tiny when we have longer inputs or rarer words.

p(<s> i want english food </s>) =
p(i |<s>) × p(want | i) × p(english |want)
× p(food |english) × p(</s> | food)

= 0.25 × 0.33 × 0.0011 × 0.5 × 0.68 = 0.000031



Avoiding Numeric Underflow

• Most n-grams are ridiculously sparse, so probabilities will be extremely small. 
Underflow is a real risk. 

• For numeric stability, we often work with log-probabilities instead.

log
n

∏
i=1

p(wi |wi−1) =
n

∑
i=1

log p(wi |wi−1)

p(<s> i want english food </s>) =

= 0.25 × 0.33 × 0.0011 × 0.5 × 0.68 = 0.000031

log(0.25) + log(0.33) + log(0.0011) + log(0.5) + log(0.68) ≈ − 4.51



Perplexity

• The Shannon Game: how well can we predict the 
next word? 
 
 
 
 
 

• Unigrams are terrible at this. 

• A better model of text is one that assigns a higher probability to the 
word that actually appeared.

Intuition

I always order pizza with cheese and ______

The 5th president of the US was ______

I saw a ___________



Evaluating a Language Model

• Intuition: Does our language model prefer good sentences over bad sentences? 

• Good sentences are more likely to appear in a corpus 

• Ideally, an LM should assign higher probabilities to well-formed or frequently 
observed sentences 

• We will train our language model on a training set. 

• We will evaluate the model on a test set—data it hasn’t seen during training.



Evaluating a Language Model

• A good language model should assign a high probability to a well-formed dataset 
that it hasn’t seen before. 

• Raw probabilities aren’t great for this: they depend on sequence length. 

• Thus, we should use a metric computed as a function of probability, but 
normalized by count. 
 

• We will use a metric called perplexity. 



• The perplexity of an LM on dataset  containing  tokens is: 

• Probability is inversely related to perplexity. Thus, lower perplexity is better.

D N

Perplexity

ppl(D) = p(x1, x2, …, xN)− 1
N

≡
1

p(x1, x2, …, xN)
N ppl(D) =

N

∏
i

1
p(wi |w1, …, wi−1)

Chain rule

N ppl(D) =
N

∏
i

1
p(wi |wi−1)

N

Markov assumption



Perplexity as Weighted Average Branching Factor

• Branching factor: number of possible next words that can follow a given word 

• Assume this is our vocabulary: 

• Let’s define a probabilistic language where all tokens have  

• The perplexity of this dataset: “red red red red blue” is:

p =
1
3

L = {red, green, blue}

(( 1
3 )5)− 1

5 = (1
3 )−1 = 3



Higher n  better models→

• After training on 38M words from the Wall Street Journal (test set 1.5M words):



Higher n  better models?→

• Note: better perplexity does not always mean we generate better sentences! 

• Higher-order n-grams will generate more fluent sentences. 

• Using maximum likelihood estimators, higher-order n-grams will always give you 
better likelihood on the training set, but not necessarily the test set. 

• E.g., you could overfit to the training set more easily with higher-order n-
grams.



Practical Details

• We actually use log-probabilities to compute perplexity. 

• I.e., perplexity is the exponentiated token-level negative log-likelihood.

ppl(W) = exp( −
1
N

N

∑
i

log p(wi |w<i))



The Shakespeare Corpus, revisited

N=884,647 tokens V=29,066 types

Shakespeare produced 300,000 bigram types out of V =844 million possible 
bigrams. 

99.96% of the possible bigrams never appeared.

2

It gets worse if we scale up to 4-grams: a model starts to regurgitate text 
from the Shakespeare corpus, with very little novel content!



Overfitting

• N-grams only work well if the test corpus looks a lot like the training corpus 

• In practice, it often doesn’t 

• How do we train robust models that generalize well to new data? 

• One kind of generalization: novel n-grams! 

• N-grams that never occur in the training corpus, but occur in the test corpus

Train set
…denied the allegations
…denied the requests
…denied the claims

Test set
…denied the offer
…denied the loan



What about novel n-grams?

• During evaluation, what is the probability of an n-gram that wasn’t in the training 
corpus?

p(wi |wi−1) =
C(wi−1wi)
C(wi−1)



What about novel n-grams?

• During evaluation, what is the probability of an n-gram that wasn’t in the training 
corpus? 

• This isn’t great: multiplying anything by this yields  

• …which yields a perplexity of ! 

• Novel n-grams are very, very common: language is infinitely creative!

p = 0
∞

p(wi |wi−1) =
C(wi−1wi)
C(wi−1)

=
0

C(wi−1) 😔



Smoothing

• One solution: add a constant s.t. nothing truly has a probability of 0 

• Adding a constant to the numerator and denominator is called Laplace 
smoothing 

• If there’s a big vocabulary, this can massively reduce the probability of seen 
sequences

pLaplace(wi |wi−1) =
C(wi−1wi) + 1
C(wi−1) + V





pLaplace(wi |wi−1) =
C(wi−1wi) + 1
C(wi−1) + V



• Sometimes, it helps to use less context. 

• A second solution: interpolate between LMs trained on lower-order n-grams 

• Another way to do this is to just use the highest-order n-gram probability we can. 
If the count for that n-gram is 0, we recursively backoff to the (n-1)-gram. 

• (Interpolation usually works better.)

Interpolation

p(xk−n+1 : xn) = λ1p(xn) + λ2p(xn−1xn) + λ3p(xn−2 : xn) + …

Unigram LM Bigram LM Trigram LM



Choosing Lambdas

• Use a held-out development corpus to evaluate different lambda settings 

• Fix n-gram probabilities using the training data 

• Search for lambdas that give largest probability to held-out development set

p(xk−n+1 : xn) = λ1p(xn) + λ2p(xn−1xn) + λ3p(xn−2 : xn) + …



Absolute Discounting

• The most performant n-gram language models are 
based on Kneser-Ney smoothing. 

• This is a recursive backoff algorithm based on 
absolute discounting. 

• Subtract a fixed (absolute) discount  from 
each n-gram count

d

pAD(wi |wi−1) =
C(wi−1wi) − d
∑w′￼

C(wi−1w′￼)
+ λ(wi−1)p(wi)

Similar to smoothing

Backoff to (n-1)-gram

Interpolation weight



Kneser-Ney Discounting

• My vision is bad, so I often need to use reading ___________. 

• “San Francisco” is more frequent than “glasses”, but “Francisco” only occurs 
after “San”. 

• Idea: the unigram probability should not depend on the frequency of , but 
on the number of contexts in which  appears 

• Kneser-Ney Smoothing: use absolute discounting, but also use 

w
w

CKN

Intuition

glassesFrancisco

CKN(⋅w) : Number of word types  which precede w′￼ w
CKN( ⋅ ⋅ ) : ∑

w′￼

CKN(⋅w)



Kneser-Ney Discounting

• : “How likely is  to appear as a novel continuation?” 

• For each word, count the number of bigrams it completes 

• Every bigram type was novel the first time it was seen

pcontinuation(w) w

pcontinuation(w) ∝ |{wi−1 : c(wi−1w) > 0} |



Kneser-Ney Discounting

• How many times does  appear as a novel continuation: 

• Normalize by the number of word bigram types: 

• Example: “Francisco” occurring only after “San” will have low continuation 
probability

w

pcontinuation(w) ∝ |{wi−1 : c(wi−1w) > 0} |

|{(wj−1, wj) : c(wj−1, wj) > 0} |

pcontinuation(w) =
|{wi−1 : c(wi−1w) > 0} |

|{(wj−1wj) : c(wj−1, wj) > 0} |



•  is a normalization constant; it weights the probability we’ve discountedλ

Interpolated Kneser-Ney Smoothing

pKN(wi |wi−1) =
max(C(wi−1wi) − d,0)

C(wi−1)
+ λ(wi−1)pcontinuation(wi)

λ(wi−1) =
d

C(wi−1)
∣ {w : C(wi−1w) > 0} ∣

normalized discount number of types that follow wi−1

KN bigram probability unigram coefficient



Recursive Kneser-Ney Smoothing

pKN(wi |wi−1
i−n+1) =

max(CKN(wi
i−n+1) − d,0)

CKN(wi−1
i−n+1)

+ λ(wi−1
i−n+1)pKN(wi |wi−1

i−n+2)

CKN( ⋅ ) = {count( ⋅ ) for highest order
continuation count( ⋅ ) for lower order

One last modification (modified Kneser-Ney smoothing): instead of a single 
discount , we could use different discounts  for n-grams with counts of 1, 2, 
or 3 or more, respectively. This is the best-performing version of Kneser-Ney smoothing.

d d1, d2, d3+



A state-of-the-art n-gram language model!

• Infini-gram: trained on 5 trillion tokens! 

• gram LM with backoff:∞− https://arxiv.org/pdf/2401.17377

https://huggingface.co/spaces/liujch1998/infini-gram

https://arxiv.org/pdf/2401.17377
https://huggingface.co/spaces/liujch1998/infini-gram

