Sequence Modeling

Part1: N-grams

Aaron Mueller
CAS CS 505: Introduction to Natural Language Processing
Spring 2026
Boston University
[Many slides inspired by a lecture by Mohit lyyer.]

Admin

® HWO is due this coming Tuesday, Feb. 3!

® There are two Gradescope submissions: one for your code, and one for your
written answers.

® You should upload your homeworks individually.

® Optional last-minute homework help session! This will happen at your Monday
lab section on Feb. 2.

® Come with questions! This will basically be office hours++.

Overview of Concepts

An n-gram is an ordered list of tokens.

A language model is a system that
produces probabilities over sequences

f tokens.
oftokens S | GREEN
We use the chain rule of probabilities to
break sequence probabilities into a THE GREEN
series of conditional continuation

probabilities.

THE GRASS

A Markov assumption allows us to

ignore distant context.

Smoothing, interpolation, and backoff
allow LMs to gracefully handle unseen
token sequences.

Why would you want to assign probability to text?

® Translation:

p(he drove to the restaurant) > p(he flew to the restaurant)

* Speech recognition:

pP(NLP systems recognize speech) > p(In elpy systems, wreck a nice beach)

* Autocomplete:

p(drawing is fun) > p(drawing is JsonObject)

A Brief History of Language Modeling

* 1910s: N-grams

* 1940s: (Cross-)entropy

* 1950s: Chomsky, context-free grammars

* 1980s-1990s: Recurrent neural networks, LSTMs
e 2000s: Neural language models

* 2010s - present: Transformers, large language models

Today, we’'ll start with the simplest language model: n-grams.

Language Models

A language model is a system that assigns a probability to a sequence of tokens:
(X1, Xy .oy X))

Using the chain rule, we can break this down into a product of conditional
next-token probabilities:

n
p(xlaxza °°°9-xn) — Hp(xt‘x<t)
=1

Thus, a language model is a system that produces probability distributions over next tokens
given prior context.

Reminder: The Chain Rule

* Recall the definition of conditional probabilities:

_ PA,B) |
p(B[A) =) Equivalently: p(A,B) = p(A)p(B|A)

* We can add arbitrarily many variables to this equation:

pA,B,C,D) = pA)pB|A)p(C|A,B)p(D|A,B, C)

* |[n general:

p(xla ...,Xn) — p(xl)p(XZ |xl)"'p(xn ‘xla °°°9xn—1)

Applying the Chain Rule

pWW,..w,) = Hp(wl- | wiw,. oW)

l

Prefix/Context

p(The water was remarkably clear) =
p(The) X p(water | The) X p(was | The water)
X p(remarkably | The water was)

X p(clear | The water was remarkably)

Estimating Sequence Probabilities

Let’s try to count and divide:

C(l like to vacation in Maine)

p(Maine|l like to vacation in) = , —
C(like to vacation in)

How likely are you to have seen this entire sentence in a corpus?

Many sentences you hear/read have never been uttered before!

* But we really want to avoid p = 0.

To handle this, we will make a Markov assumption.

Markov Assumption

Simplifying assumption:

p(Maine| |l like to vacation in) ~ p(Maine|in)

Or maybe:

p(Maine| | like to vacation in) ~ p(Maine | vacation in)

So basically, we assume we can ignore distant context.

A. A. Mapror (1886).

A Markov assumption holds that the future state of a system Andrei Markov
depends solely on its current state, regardless of its history.

Markov Assumption

* More generally:
pWW,..w,) & Hp(wi W owi)
i
* So each component of the product is approximated as:

pw | ww,..w._) & p(w; | w,_r...w;_;)

Unigrams (1-grams):

Cats
like
to
eat

salmon

n-grams

Cats like to eat salmon.

Bigrams (2-grams):
(Cats, like)

(like, to)
(to, eat)
(eat, salmon)

(salmon, .)

Trigrams (3-grams):

(Cats, like, to)
(like, to, eat)
(like, to, eat)

(eat, salmon, .)

A Unigram Language Model

e A unigramis an n-gram wheren = 1.

* (It's just a token probability.)
pWW,...w,) X H p(w,)
l

* These probabilities come from training on a dataset D:

Clw.
p(w;) = —(Wl)

| D | ——— number of tokens in dataset

token frequency

How can we generate text from this model?

A Bigram Language Model

pWw,...w,) =~ Hp(wl- lw._)

* We can estimate bigram probabilities with maximum likelihood estimation (MLE)

Cw;_y, w;) Cw;_y, w;)
Cow_y)

W: | W: {) =
P l‘ -1 ZW/C(Wi—laW,)

Relative frequency

Example

MLE

_ C(Wi—la Wi) <s> | am Sam </s>
p(Wi | Wi_1) Y EEE— <s> Sam | am </s>

W) <s> Do you like green eggs and ham? </s>
1 .
p(l]<s>) = 3= 0.33 p(Sam|<s>) = 7 p(eggs|like) = ?
p(</s>|Sam) = l — 05 p(Sam|am) = ? p(Sam|l) = ?

2

Example

MLE

C(W-_l, w.) <s> | am Sam </s>
p(Wi | Wi_l)\'— — <s> Sam | am </s>
C(w;_1)

<s> Do you like green eggs and ham? </s>

1 1 . 0
p(l]<s>) = 3= 0.33 p(Sam|<s>) = 3= 0.33 p(eggs| like) = - = 0.0

1 1 0
p(</s>| Sam) = = 0.5 p(Sam|am) =3 = 0.5 p(Sam 1) = = 0.0

Generating from a Language Model

* Prefix: “students opened their”

* In greedy decoding, we always pick the token l laptops
with the highest probability: l

w, = arg max p(w,| w_,)
W

. . a Z0O
* |n sampling, we randomly pick a token

according to its probability

Generating Shakespeare

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry. Live
2 king. Follow.
gram —What means, sir. I confess she? then all sorts, he 1s trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 "t1s done.

gram —This shall forbid it should be branded, i1f renown made 1t empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv’d in;
gram —It cannot be but so.

These look better the higher our n is, so let’s train higher-order n-gram models!

A Bigger Example

The Berkeley Restaurant Project corpus:
can you tell me about any good cantonese restaurants close by
tell me about chez panisse when is caffe venezia open during the day

I'm looking for a good place to eat breakfast

i want to eat chinese food Ilunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 |
: to 2 0 4 686 2 0 6 211
Notice how sparse eat 0 0 2 0 16 2 42 0
this distribution is. chinese 1 0 0 0 0 82 1 0
food 15 O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

We normalize row-wise to get bigram probabilities:

i want to eat chinese food Ilunch spend
i 0.002 0.33 0O 0.0036 0O 0 0 0.00079
want 0.0022 O 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 O
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 O 0.00092 0.0037 0O 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

The Probability of a Sequence of n-grams

* \We can estimate the probability of a sequence via a product of n-gram
probabilities:

p(<s> i want english food </s>) =
p(i|<s>) X p(want |i) X p(english | want)
X p(food | english) X p(</s>|food)

= 0.25 % 0.33 x0.0011 X 0.5 x 0.68 = 0.000031

* This probability is very close to O—as are most sentence probabilities.

* These probabilities get tiny when we have longer inputs or rarer words.

Avoiding Numeric Underflow

* Most n-grams are ridiculously sparse, so probabilities will be extremely small.
Underflow is a real risk.

* For numeric stability, we often work with log-probabilities instead.

long(Wi |w;_q) = Z log p(w;|w;_;)
i=1 i=1

p(<s> i want english food </s>) =

= 0.25 X 0.33 X 0.0011 x 0.5 x 0.68 = 0.000031
log(0.25) + 1og(0.33) + 10g(0.0011) + 1log(0.5) + log(0.68) ~ —4.51

Perplexity

Intuition
* The Shannon Game: how well can we predict the /" mushrooms 0.1
next word? pepperoni 0.1
| always order pizza with cheese and < anchovies 0.01

The 5th president of the US was

fried rice 0.0001
| saw a

®* Unigrams are terrible at this. _ and 1e-100

* A better model of text is one that assigns a higher probability to the
word that actually appeared.

Evaluating a Language Model

* |ntuition: Does our language model prefer good sentences over bad sentences?
* Good sentences are more likely to appear in a corpus

* |deally, an LM should assign higher probabilities to well-formed or frequently
observed sentences

* We will train our language model on a training set.

* We will evaluate the model on a test set—data it hasn’t seen during training.

Evaluating a Language Model

A good language model should assign a high probability to a well-formed dataset
that it hasn’t seen before.

Raw probabilities aren’t great for this: they depend on sequence length.

Thus, we should use a metric computed as a function of probability, but
normalized by count.

We will use a metric called perplexity.

Perplexity

* The perplexity of an LM on dataset D containing /NV tokens is:

ppl(D) = p(x,, x,, ...,xN)_% Chain rule

Markov assumption

- e’ N

]V o ppl(D) =]<H

pP(xX1, X0, .oy Xy) |

1

pw;|wy, ..., w,

.....

* Probability is inversely related to perplexity. Thus, lower perplexity is better.

Perplexity as Weighted Average Branching Factor

* Branching factor: number of possible next words that can follow a given word

* Assume this is our vocabulary:

L = {red, green, blue}

o Let’s define a probabilistic language where all tokens have p = —

3
* The perplexity of this dataset: “red red red red blue” is:

(@)=

Higher n — better models

* After training on 38M words from the Wall Street Journal (test set 1.5M words):

N-gram Bigram |Trigram
Order

Perplexity 962

Higher n — better models?

* Note: better perplexity does not always mean we generate better sentences!
* Higher-order n-grams will generate more fluent sentences.

* Using maximum likelihood estimators, higher-order n-grams will always give you
better likelihood on the training set, but not necessarily the test set.

* E.g., you could overfit to the training set more easily with higher-order n-
grams.

Practical Details

* We actually use log-probabilities to compute perplexity.

1 N
pPI(W) = exp(= Y logp(wi))

* |.e., perplexity is the exponentiated token-level negative log-likelihood.

The Shakespeare Corpus, revisited

N=884,647 tokens V=29,066 types

Shakespeare produced 300,000 bigram types out of V?=844 million possible
bigrams.

99.96% of the possible bigrams never appeared.

It gets worse if we scale up to 4-grams: a model starts to regurgitate text
from the Shakespeare corpus, with very little novel content!

Overfitting

* N-grams only work well if the test corpus looks a lot like the training corpus

* |n practice, it often doesn'’t

* How do we train robust models that generalize well to new data?
* One kind of generalization: novel n-grams!

* N-grams that never occur in the training corpus, but occur in the test corpus

Train set Test set
...denied the allegations ...denied the offer
...denied the requests ...denied the loan

...denied the claims

What about novel n-grams?

* During evaluation, what is the probability of an n-gram that wasn’t in the training

corpus?
Cw,_w,)

C(w;_y)

p(w; | Wi_1) =

What about novel n-grams?

* During evaluation, what is the probability of an n-gram that wasn’t in the training

corpus?
Cw,_w;) 0 Pt

C(w;_y) R C(w;_y) &

p(w; | Wi_1) =

* This isn’t great: multiplying anything by this yields p = 0

e _..which yields a perplexity of oo!

* Novel n-grams are very, very common: language is infinitely creative!

Smoothing

* One solution: add a constant s.t. nothing truly has a probability of O

Cw,_w)+ 1

Plaplace(Vil Wi-1) = Cov)+ V

* Adding a constant to the numerator and denominator is called Laplace
smoothing

* |f there's a big vocabulary, this can massively reduce the probability of seen
seguences

i want to eat chinese food lunch spend
i 6 828 | 10 | 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat | | 3 | 17 3 43 |
chinese 2 | | | | 83 2 1
food 1 1 16 | 2 5 1 1
lunch 3 1 1 | 1 2 1 1

2 1 2 | 1 1 1 1

spend

PLaplace™ilWi-1) =

Cw,_w)+ 1

C (Wi— 1) +V

i want to eat chinese food lunch spend
1 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Interpolation

Sometimes, it helps to use less context.

A second solution: interpolate between LMs trained on lower-order n-grams

P, 1t X)) = Apx,) + HLpx,_1x,) + Ap(x,_5 1 x,) + ...

Unigram LM Bigram LM Trigram LM

Another way to do this is to just use the highest-order n-gram probability we can.
If the count for that n-gram is O, we recursively backoff to the (n-1)-gram.

(Interpolation usually works better.)

Choosing Lambdas

PXp_, 1t X,) = Apx,) + HLpx,_x,) + Apx,_H 1 x,) + ...

‘ve’ TRAINING [

* Use a held-out development corpus to evaluate different lambda settings
* Fix n-gram probabilities using the training data

* Search for lambdas that give largest probability to held-out development set

Absolute Discounting

* The most performant n-gram language models are Bjoram countin Bigram count in

based on Kneser-Ney smoothing. training set heldout set
* This is a recursive backoff algorithm based on 0 0.0000270
absolute discounting. 1 0.448

| | 2 1.25
* Subtract a fixed (absolute) discount d from 3 294
each n-gram count 4 393
Backoff to (n-1)-gram 5 4.21
6 5.23
pAD(Wl ‘ Wi—l) p— C(Wi_1Wi) —d -+ /l(w_l)p(w)] 6.21
wa C(w;_w’) | | 8§ 7.21
9 8.26

Similar to smoothing |nterpolation weight

Kneser-Ney Discounting

Intuition

e My vision is bad, so | often need to use reading (#3650

* “San Francisco” is more frequent than “glasses”, but “Francisco” only occurs
after “San”.

® Idea: the unigram probability should not depend on the frequency of w, but
on the number of contexts in which w appears

CkN(w) : Number of word types w’ which precede w
CNC)t), CNGW)
W/

¢ Kneser-Ney Smoothing: use absolute discounting, but also use Cg

Kneser-Ney Discounting

o Pcontinuation(W)= How likely is w to appear as a novel continuation?

* For each word, count the number of bigrams it completes

* Every bigram type was novel the first time it was seen

pcgntinuation(w) X ‘ {Wi—l : C(Wi—lw) > O} |

Kneser-Ney Discounting

* How many times does w appear as a novel continuation:
Pcontinuation®) & | tw;_1 : c(w;_yw) > 0} |

* Normalize by the number of word bigram types:
[{(wi_, w) = c(wi_, wy) > 0}
o [Hwisp tewisyw) > 04
Pcontinuation®) = {(w_w) < c(w,_,w) > 0} |

* Example: “Francisco” occurring only after “San” will have low continuation
probability

Interpolated Kneser-Ney Smoothing

KN bigram probability unigram coefficient

PKNW; [Wi_1) Cw,_y) Wi)Pcontinuation(")

* 4 is a normalization constant; it weights the probability we've discounted

d
Aw,_) = C(W—l) | {w: Cw,_w) >0}]

normalized discount number of types that follow w;_

Recursive Kneser-Ney Smoothing

maX(CKN(w-i) —d,0)

pKN(W |Wl n+1) o +/1(Wz n+1)pKN(W |Wl n+2)

CKNWS)

count() for highest order
continuation count(-) for lower order

CKN(‘)={

One last modification (modified Kneser-Ney smoothing): instead of a single

discount d, we could use different discounts d|, d,, d;, for n-grams with counts of 1, 2,
or 3 or more, respectively. This is the best-performing version of Kneser-Ney smoothing.

A state-of-the-art n-gram language model!

* |nfini-gram: trained on 5 trillion tokens!

* co—gram LM with backofft: https://arxiv.ora/pdf/2401.17377

https://huggingface.co/spaces/liujch1998/infini-gram

(co-gram LM) (n = 16 for this case)

cnt(Engineering, University of) = 274644 cnt(research at the Paul G. Allen School of Computer Science and Engineering, University of) = 0
ineering, University of) = cnt(at the Paul G. Allen School of Computer Science and Engineering, University of) = 10

_California (20896 / 274644) % P(* | at the Paul G. Allen School of Computer Science and Engineering, University of) =

_Illinois (10631 / 274644)

_Michigan (9094 / 274644) % ‘ ' . ’ _Washington (10 / 10)

_Colorado (6438 / 274644)

_Southexrn (6340 / 274644) Infini ind
nrini-gram 1inaex

(10 TiB)

_Washington (6340 / 274644)

\. J

https://arxiv.org/pdf/2401.17377
https://huggingface.co/spaces/liujch1998/infini-gram

