Words, Morphemes,
and Characters

Aaron Mueller
CAS CS 505: Introduction to Natural Language Processing
Spring 2026
Boston University

Overview of Concepts

Words are text units separated by whitespaces.
Morphemes are units of meaning that compose into words.

Tokens are units of input to a language model, usually
(but not always) composed of units smaller than words.

Documents are collections of sentences.
Corpora are collections of documents. (Singular: corpus.)

Language models are systems that assign probabilities
to arbitrary sequences of tokens.

Regular expressions are important tools for string
matching and preprocessing.

ANNA KARENINA ¢

“But then, while she was here in the house with us, I
did not permit myself any liberties. And the worst of
all is that she is already.... All this must needs happen
just to spite me. Ar! ar! ar! But what, what is to be
done?”

There was no answer except that common answer
which life gives to all the most complicated and unsolva-
ble questions, — this answer: You must live according
to circumstances, in other words, forget yourself. But
as you cannot forget yourself in sleep-—at least till
night, as you cannot return to that music which the
water-bottle woman sang, therefore you must forget
yourself in the dream of life!

“We shall see by and by,” said Stepan Arkadyevitch
to himself, and rising he put on his gray dressing-gown
with blue silk lining, tied the tassels into a knot, and
took a full breath into his ample lungs. Then with his
usual firm step, his legs spread somewhat apart and
easily bearing the solid weight of his body, he went
over to the window, lifted the curtain, and loudly rang
the bell. It was instantly answered by his old friend
and valet Matve, who came in bringing his clothes,
boots, and a telegram. Behind Matve came the barber
with the shaving utensils.

“ Are there any papers from the court-house ?”” asked
Stepan Arkadyevitch, taking the telegram and taking
his seat in front of the mirror.

... “On the breakfast-table,” replied Matve, looking
inquiringly and with sympathy at his master, and after
an instant’s pause, added with a sly smile, “ They have
come from the boss of the livery-stable.”

Stepan Arkadyevitch made no reply and only looked
at Matve in the mirror. By the look which they inter-
changed it could be seen how they understood each
other. The look of Stepan Arkadyevitch seemed to
ask, “ Why did you say that? Don’t you know?”

Matve thrust his hands in his jacket pockets, kicked
out his leg, and silently, good-naturedly, almost smiling,
looked back to his master : —

“I ordered him to come on Sunday, and till then that

What can you learn from context?

Boston University is in . [Factual knowledge]

Cats like to eat . [Factual knowledge]

Where are napkins? [Parts of speech, sentence structure]}

15x5= [Arithmetic]
The keys to the cabinet on the table. [Subject-verb agreement]

You could easily fill in these blanks with plausible values. How could we get
computers to do this?

How might we compute the similarity of two sentences?

How would we represent the meaning of a word or sentence in a computer?

A language model is a system that produces probabilities over
seqguences of tokens:

pPWi, Wy, coouw,)

The number of possible token sequences is infinite. How could we
model this?

We'll use the chain rule to break this down:

n
pwiwy, .owy) = [[powi 1w,
=1
This makes the definition more tractable:

A language model is a system that takes sequences of tokens as inputs,
and produces a probability distribution over the next token.

Google

<+ What are the most important

what are the most important vitamins

what are the most important nfl games today
what are the most important vaccines for babies
what are the most important vitamins to take
what are the most important amendments

what are the most important things in life

+

Hi! Can you please drop

return

A language model is a system that takes sequences of tokens as inputs,
and produces a probability distribution over next tokens:

p(W19 Wza R Wn) — Hp(wl ‘ W<i)
=1

Where w; is part of a vocabulary V.

Over what units should we define our vocabulary? Words, characters, something else?

These questions relate to notions of tokenization—the mapping of a string to
(lists of) tokens.

Tokens are the atomic unit
of input to an NLP system.

It want The ? care 1

Language
Model

Embedding

[This, is, T In this example input, there are 4 words,

but 6 tokens.

A tokenizer splits a string into tokens.

This 1s an 1nput.

Words

For any NLP system, we need to define a finite vocabulary.

First idea: let’s use the top-k most common words as our vocabulary.

Text: The man saw the cat .
Tokens: 11 387 720 5 407 3
N

Tokens are represented as indices in a vocabulary

What can you learn from context?

Boston University is in . [Factual knowledge]

Cats like to eat . [Factual knowledge]

Where are napkins? [Parts of speech, sentence structure]}
15x5= [Arithmetic]

The keys to the cabinet on the table. [Subject-verb agreement]

10

What can you learn from context?

1102 582 59 80 10 [Factual knowledge]

608 762 91 203 10 [Factual knowledge]

1509 108 409211 [Parts of speech, sentence structure]
2091102 2082 1011 [Arithmetic]

812529 91 61 75 61 3520 10 [Subject-verb agreement}

11

Word Tokenization

* Not as simple as splitting based on whitespace!

Mr. Johnson thinks the boys’ stories about San Francisco aren’'t amusing.

* There are lots of specialized rules about splitting things like contractions,
punctuation, etc.

Check out spaCy’s tokenizers for examples: https://spacy.io/api/tokenizer

12

https://spacy.io/api/tokenizer

Types vs. Tokens

This document is about cats. This document explains cats.

[This, document, is, about, cats, ., This, document, explains, cats,

Types are the unique items in a vocabulary.

If we use a word-level tokenizer, how many tokens do we have? 11
How many types? 7

The type-token distinction can be tricky:
* |In a word-level tokenizer, are “the” and “The” distinct types?

* How about “the” and “ the”?

. |

13

Corpus Types = |V| Instances = N

Shakespeare 31 thousand 884 thousand
Brown corpus 38 thousand 1 million
Switchboard telephone conversations 20 thousand 2.4 million
COCA 2 million 440 million
Google n-grams 13 million 1 trillion

Some of these datasets have a huge number of types!

14

Content Words vs. Function Words

® Function words are a closed class: they are finite, and you cannot (usually) add more
® Articles: the, a
® Prepositions: of, by, near

® Conjunctions: and, but, yet

® Content words are an open class: they are, in theory, infinite
* Nouns: cats, generosity, giants, apricity, grub

* Verbs: fly, abvolate, yeet

15

The Finite Vocabulary Problem

* There are an infinite number of words. Thus, any finite vocabulary based in words will
not fully cover natural language.

* What if we see tokens in the test set that weren’t in the training set? What if the
vocabulary is too small for how big the dataset is?

* |f we encounter a word we haven’t seen before, we replace it with a special <UNK> token.
* <UNK> has its own representation and probability.

* This token will kill our language model’s quality fast. We want to minimize how often
this token appears as much as possible.

16

The Finite Vocabulary Problem

The subject was Argus-eyed; he perceived the glint of a feline’s eyes.

If a word is outside our vocabulary, we’ll replace it with <UNK>, a token
for unknown or out-of-vocabulary tokens.

The subject was <UNK>; he <UNK> the <UNK> of a <UNK> eyes.

17

Zipf's Law

Zipf's Law: If we sort words by frequency, the probability of a word is inversely

proportional to its rank:

the
‘6"{
0.04 -
of
s W legomena
< 0.02 %
‘ f \
0.01¢'"e .
cat constitutionality endomorphisms 'borg JsonObjectBa
/ _ i/
0.00 - : -

0 50000 100000 150000
i

200000

250000

H
pw) x —

Py

This means that most words
are very rare!

Normalization and Lemmatization

Normalization: Standardizing text into a particular format

Examples:

Lowercasing: convert all capitals to lowercase
James left for Scotland — james left for scotland

Spelling correction:

James left for Scoltana

Abbreviation reformatting:

Ph.D., U.S.A. = PhD, USA

19

Normalization and Lemmatization

Lemmatization: Replacing inflected forms of a word with their uninflected roots:

ran, runs, running — run

cars, car — car

John worked late on projects. — John work late on project.

(Note: lemmatization is not always as easy as removing suffixes!

" /e

Consider “ran”, “stories”, “went”).

For real NLP systems, normalization is essential, but lemmatization is rare.

20

Other Limitations of Word Tokenizers

e Word-level tokenizers will consider different forms of the same word
as different tokens:

run, runs, ran, running

apple, apples

* This means these forms will all have separate representations

* Also an issue in languages that have very complex morphology.

21

Morphemes

Cekoslovakyalilastiramadiklarimizdanmisiniz?

Cekoslovaky al las tir a ma dk lar imiz dan mi siniz?
Czechoslovakia OF BECOME CAUSNEG NEG PST. pL 1PL. ABL Q 2PL.
PTCP POSS COP

“Are you one of those that we could not make into a Czechoslovakian?”

Each of these units of meaning is a morpheme.

& 0 v
@66 N\ <\®\6 NN)

° @ . .6 \ .
D.n‘ferent languages have very & S o\éf(#‘) %\‘@2&\%{\ @Qg@\@
different numbers of morphemes _. k17 o1on meos .
per word: -

Analytic Synthetic Polysynthetic

Morphemes per Word 22

Morphemes

John work - ed late on project - s.
John work - PAST late on project -PL

Each of these units of meaning is a morpheme.

& 0 v
N N O &

" O ’) X ‘ O
D.n°ferent languages have very & & O\(\)f{dp %4@50‘# @(@@@@
different numbers of morphemes _. e 19 oine aeoe .
per word: s

Analytic Synthetic Polysynthetic

Morphemes per Word

Maybe we could split words into morphemes! Unfortunately, this is slow and hard...

but inspired by this, let’s pursue the idea of splitting words into subwords.

23

Characters

The man saw the cat.

l Character-level tokenizer

T,h,e, ,m,a,n, ,s,aw,_th,e, c,at,.
Pros:

- Solves the finite-vocabulary problem—to a degree.
(But may not work as well for Chinese, which has >100,000 characters.)

- Easy to implement.
Cons:

- Can be hard to train a good language model. Long contexts,
and the same character can appear in many different contexts.

24

2016: Subword Tokenization

* Developed for machine translation by Sennrich et al. [2016]

““The main motivation behind this paper is that the translation of some
words 1s transparent in that they are translatable by a competent
translator even if they are novel to him or her, based on a translation of
known subword units such as morphemes or phonemes.”

* Later used in BERT, RoBERTa, GPT, among other models

* Relies on a simple algorithm called byte-pair encoding

25

Byte-pair Encoding

1. Split corpus into characters.
the man saw the cat.

l

t,h,e, ,m,a,n, s,aw,_the, c,at,.

2. Count each pair of characters:

(t,h): 2
(h,e): 2
(m,a): 1
(a,n): 1

3. Merge the highest-frequency pair into one token:

(t,h) -> th th,e, ,m,a,n, ,s,a,w, ,th,e, ,c,a,t.

4. Repeat m times, where m is the number of merges (a hyperparameter).

26

Byte-pair Encoding

the man saw the cat.

l

th,e,_,m,a,n, ,s,a,w, th,e, c,at.

2. Count each pair of tokens:

(th,e): 2
(m,a): 1
(a,n): 1

3. Merge the highest-frequency pair into one token:

(th,e) -> the the, ,m,a,n, ,s,a,w, ,the, ,c,a,t.

4. Repeat m times, where m is the number of merges (a hyperparameter).

27

Byte-pair Encoding

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V
V <—all unique characters in C # 1nitial set of tokens 1s characters
fori=1tok do # merge tokens k times

11, tr <— Most frequent pair of adjacent tokens in C

tvew < I + IR # make new token by concatenating

V&V + tyew # update the vocabulary

Replace each occurrence of #7, tg in C with 2y # and update the corpus
return V

1. Split inputs into characters.

2. Count each pair of tokens.

3. Merge the highest-frequency pair into a new token. Do not merge across word boundaries.

4. Repeat k times, where k is the number of merges (a hyperparameter).

Byte-pair Encoding

* To avoid <UNK>, all possible characters or symbols need to be in the base vocab.
This can be a lot!

* Unicode has hundreds of thousands, and growing!

* GPT-2 uses bytes as the base vocabulary (only 256 of them), and applies BPE on
top of byte sequences (with some special rules to prevent certain kinds of
merges).

* Usually our vocab is somewhere between 32K to 100K

29

Unicode

We used an algorithm called byte-pair encoding, but over characters. What's the

difference? What is a “character”?

This almost always refers to Unicode characters.

Unicode assigns a code point to each character.

There are a lot of Unicode characters, so this
doesn’t solve the finite vocabulary problem.

U+0061
U+0062
U+0063
U+00F9
U+00FA
U+00FB
U+00FC
U+8FDB
U+8FDC
U+8FDD
U+8FDE

LETTER
LETTER
LETTER
LETTER
LETTER
LETTER
LETTER

U WITH GRAVE

U WITH ACUTE

U WITH CIRCUMFLEX
U WITH DIAERESIS

U+1F600
U+1FOOE

GRINNING FACE
MAHJONG TILE EIGHT OF CHARACTERS 30

=7 ((: WSS s 0o

UTF-8 and Bytes

Code Points UTF-8 Encoding
From - To Bit Value Byte 1 Byte 2 Byte 3 Byte 4
U+0000-U+007F OXXXXXXX XXXXXXXX
U+0080-U+07FF 00000yyy yyxxxxxx 110yyyyy 10xxxxxx
U+0800-U+FFFF ZZ7ZZYYYY YYXXXXXX 1110zzzz 10yyyyyy 10xxxxxx

U+010000-U+10FFFF 000uuuuu zzzzyyyy yyXXXXXX 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

A byte is 8 bits, so it can take values in [O, 255].

In UTF-8, a character contains a variable number of bytes. E.g., ‘n' has Unicode code point
U+00F1, and bytes C3 B1 (195, 177)

There are only 256 possible bytes, so a tokenizer based on bytes would have full
coverage!

A byte-based LM could generate invalid Unicode, however, which would yield a
meaningless sequence

31

Implementation Details

* |In practice, common tokenizers tend to use subword vocabularies with tens of
thousands to hundreds of thousands of entries.

e BERT (2018): 30,522

e GPT-2(2019): 50,257

* | lama 3.1 (2024): 128,256
e GPT-40 (2024): =200,000
* Gemma 3 (2025): 256,000

Corpora

* We usually train our tokenizers and language models on corpora—collections of documents.
* No corpus is fully representative of all natural language. Documents are written:

* By specific people

* From a specific time and place

* |In a specific language variety

* For some specific purpose(s).

* These days, language models are trained primarily on internet-based corpora.
* The internet has tons of useful information and knowledge!

* ...But also a great deal of negativity and hatred.

33

ANNA KARENINA $

“But then, while she was here in the house with us, I
did not permit myself any liberties. And the worst of
all is that she is already.... All this must needs happen
just to spite me. Ar! ar! ar! But what, what is to be
done?”

There was no answer except that common answer
which life gives to all the most complicated and unsolva-
ble questions, — this answer: You must live according
to circumstances, in other words, forget yourself. But
as you cannot forget yourself in sleep—at least till

[]
night, as you cannot return to that music which the
water-bottle woman sang, therefore you must forget
yourself in the dream of life!
“We shall see by and by,” said Stepan Arkadyevitch
to himself, and rising he put on his gray dressing-gown

with blue silk lining, tied the tassels into a knot, and
took a full breath into his ample lungs. Then with his
usual firm step, his legs spread somewhat apart and
easily bearing the solid weight of his body, he went
over to the window, lifted the curtain, and Joudly rang
the bell. It was instantly answered by his old friend
and valet Matve, who came in bringing his clothes,
boots, and a telegram. Behind Matve came the barber
with the shaving utensils.

““ Are there any papers from the court-house ?” asked

Stepan Arkadyevitch, taking the telegram and taking
his seat in front of the mirror.

... “On the breakfast-table,” replied Matve, looking
inquiringly and with sympathy at his master, and after
an instant’s pause, added with a sly smile, “ They have
come from the boss of the livery-stable.”

Stepan Arkadyevitch made no reply and only looked
at Matve in the mirror. By the look which they inter-
changed it could be seen how they understood each
other. The look of Stepan Arkadyevitch seemed to
ask, “Why did you say that? Don’t you know?”

Matve thrust his hands in his jacket pockets, kicked
out his leg, and silently, good-naturedly, almost smiling,
looked back to his master : —

“I ordered him to come on Sunday, and till then that

O Joomla! Templates

Abowr Joarnla!

Man Merw

Q Foin

Assevhad moaned im !

leatuins The Commanity

- .
Jor (= 8 3 %o oot mvare BAM ind - ;
: 2 vz doe '3 zoce Sl o - N,
vy, Yowm o0 tn dowe dowen, / U

@ Afvertitement

temasttine
y Wetcome, to cur Templites

Cere

Mow 12 inttall Joomls?

Soomds vorgt wl
» Yo

* Bewptate wetater

Arervia il dlhden

Speech-to-text
(DMl [Audio

Collecting a Corpus

This is some
text—don't
write it all in
one place.

this is some
text — don 't

Normalization

write it all in
one place.

Tokenization

this, is, some, te, xt,

~don, ‘t, write, it, all,
_in, _one, place, .

34

Problems in Tokenization

* A tokenizer trained well for one corpus may not generalize well because of:

¢ Language imbalance: A great English tokenizer would not necessarily be a
good Turkish tokenizer

® Domain shift: A tokenizer that works well for scientific articles would not
necessarily work well for social media

® Temporal shift: A tokenizer trained on internet text from before the year
2000 may not effectively handle text from the 2025 internet.

35

Problems in Tokenization

Handling numbers is particularly tricky. Let’s say you want to represent this sequence:
85,219 x 20 =

A BPE-based tokenizer might spit out something like:
[8, 5, ,, 21, 9, x, 20, =]

Clearly this isn't great. Some models (like Gemma 2) just split all digits into their own
tokens; others (like Llama 3) preserve common multi-digit sequences. There are trade-

offs to both approaches.

36

Prac

The amount of text models
are trained on is growing

exponentially: 10 trillion
Llama 3.3 (2024)

BERT (2018)

3 billion Q GPT-3 (2020)
o 30 billion 200 billion

RoBERTa (2019)

It is impossible to process this much text by hand. This is an issue when most gains
in NLP come from data these days, and not from algorithmic innovations.

37

Regular Expressions

Regular Expressions

e A.k.a., regex

* Used in every computer language. Some regex tools you may have used:
* Unix grep
* Python re

* Can be used to:
* Find strings of a certain type
* Search large corora

®* Preprocess text

39

Regex Tokenizers

>>> text = 'That U.S.A. poster-print costs $12.40...°

>>> pattern = r’ '’ (7x) # set flag to allow verbose regexps
([A-Z]\.)+ # abbreviations, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$?2\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| \.\.\. # ellipsis
| [JL.,;"’?20:-_"] # these are separate tokens; includes], [

>>> nltk.regexp_tokenize(text, pattern)
['That’, 'U.S.A.’, ’'poster-print’, ’'costs’, '$12.40°’, ’...’]

The Natural Language Toolkit (nltk)’s word tokenizer is based
on regular expressions.

40

Character Disjunctions

Square brackets indicate logical ORs (disjunctions) or ranges:

Pattern Match String
r'[mM]ary" Mary or mary “Mary Ann stopped by Mona’s”
r'[abc]” ‘a’, ‘b’, or °C’ “In uomini, in soldati™

r'[1234567890]" any one digit “plenty of 7 to 5”

You can tell the regex what not to find using a carat (*):

Regex Match (single characters) Example Patterns Matched
r'["A-Z]" not an upper case letter “Oyin pripetchik™

r'["Ss]" neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
r'[".]" not a period “our resident Djinn”

r'[e”]" either ‘¢’ or °°’ “look up = now”

r'a"b" the pattern ‘a”b’ “look up a” b now”

41

Counting Characters

Regex Match

* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? zero or one occurrence of the previous char or expression
{n} exactly n occurrences of the previous char or expression

any single char
any string of zero or more chars

ba*: matches b, ba, baaaaa b.: matches ba, bb, b4, ...
ba+: matches ba, baaaaa b.*: matches anything that starts
with b

ba?: matches b or ba

ba{3}: matches baaa

42

Anchors

Regex Match

i start of line

$ end of line

\b word boundary

\B non-word boundary

These allow you to specify where a regex should be matched.

Example: say you want to find sentences containing the word “the”.

r“the”: Doesn’t catch capitalized “The”!
r”[tT]he”: might match things like “bathe” or “Theme”
r"\b[tT]he\b”: only matches words “The” or “the”!

43

Order of Operations

Parenthesis O

Counters * + 7 {}
Sequences and anchors the "my end$
Disjunction |

r“the*” matches “theeeee” but not “thethe” because sequences are processed
after counters.

r"thelany” matches “the” or “any” but not “thany” because disjunctions
are processed after sequences.

44

Application: Word Tokenizer

>>> text = 'That U.S.A. poster-print costs $12.40...°

>>> pattern = r’ '’ (7x) # set flag to allow verbose regexps
([A-Z]\.)+ # abbreviations, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$?2\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| \.\.\. # ellipsis
| [JL.,;"’?20:-_"] # these are separate tokens; includes], [

>>> nltk.regexp_tokenize(text, pattern)
['That’, 'U.S.A.’, ’'poster-print’, ’'costs’, '$12.40°’, ’...’]

45

Application: BPE Pre-tokenizer

Before we apply the BPE algorithm, we usually do the following:

>>> 1mport regex as re
>>> pat = re.compile(
~ # Contractions: 't and 'm are tokens
r''s|'t|'re|l've|'m|"11]"'d|"

Split contractions off from their roots:

Spllt words from each other: —— # Words: sequence of Unicode letters (after optional space)
. - r'" ?2\p{L}+|"
Sp“t numbers from each other: #Number: sequence of digits (after optional space)
- r'" ?2\p{N}+|"
Split punctuation into separate tokens: # Punctuation: sequence of non-alphanumeric/non-space
#(after optional space)
Handle remaining whitespace: - T ZDAS\PALI\PAINFI+
—— # whitespace
. r'"\s+(?!\S) |\s+"
.)
.. . >>> text = "We're 350 dogs! Um, lunch?"
(This is the actual pre-tokenizer |... printcpat. findallctext))
for GPT_ZI) ['We', "'re", ' 350', ' dogs', '!', "Um', ',', " lunch', '?']

>>>

Substitutions

Substitutions allow you to replace one string with another:

string = “The cherry grove was red.”

v

/amw/

re.sub(“cherry”, “apricot”, string)

v

“The apricot grove was red.”

47

Substitutions

* Substitutions can be very powerful. Here's a regex for converting date formats:

re.sub(r(\di2;})/(\d12})/(\d14})", r"\2-\1-\3", string)

A string of form “01/15/1985” A date of form “15-01-1985"

* You can use them to find and remove repeated words in a string:

re.sub(r"\b([A-Za-z|+)\s+\1\b”, ““ string)

Finds a sequence of letters of length at least 1
Captures this sequence as a group and looks back for it after a whitespace

48

Application: A Simple Chatbot

re.sub(r".* YOU ARE (DEPRESSED|SAD) .*",r"I AM SORRY TO HEAR YOU ARE \1",input)
—re.sub(r”.* YOU ARE (DEPRE!S

Welcome to

re.sub(r".* ALWAYS .*",r"Ci FEEEEE LL III1 ZZZZZZ AAAAA
°E LL I1 7Z AA AA
FEEEE LL I1 777 AAAAAAA
_ . °F LL I1 77 AA AA
Locates instances of “You are depressed/ EEEEEE LLLLLL IIII 7ZZZzzZ AA AA

Eliza 1s a mock Rogerian psychotherapist.
YOU are depressed/ The original program was described by Joseph Weizenbaum 1in 1966.
This implementation by Norbert Landsteiner 2005.

Locates instances of “ always ”, replies wi

ELIZA: Is something troubling you 7

YOU: Men are all alike.

ELIZA: What is the connection, do you suppose ?

YOU: They're always bugging us about something or other.
ELIZA: Can you think of a speciflc example 7

YOU: Well, my boyfriend made me come here.

ELIZA: Is 1t important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.

ELIZA: I am sorry to hear that you are depressed.

YOU: It's true. I am unhappy.

ELIZA: Can you explaln what made you unhappy 7

YOU:

Next Time

* A brief review of probability theory
* Using tokens to build our first language models: n-gram language models

* What can you learn from a token frequeny? From pairs of tokens? From triplets of
tokens?

50

