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Overview of Concepts

Words are text units separated by whitespaces.

Tokens are units of input to a language model, usually 
(but not always) composed of units smaller than words.

Documents are collections of sentences.

Morphemes are units of meaning that compose into words.

Corpora are collections of documents. (Singular: corpus.)

Language models are systems that assign probabilities 
to arbitrary sequences of tokens.

Regular expressions are important tools for string 
matching and preprocessing.
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What can you learn from context?

Boston University is in __________. 

Cats like to eat _____________. 

Where are ___________ napkins? 

15 x 5 = __________ 

The keys to the cabinet ________ on the table.

You could easily fill in these blanks with plausible values. How could we get 
computers to do this?

How might we compute the similarity of two sentences?

How would we represent the meaning of a word or sentence in a computer?

[Factual knowledge]

[Factual knowledge]

[Parts of speech, sentence structure]

[Arithmetic]
[Subject-verb agreement]
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A language model is a system that produces probabilities over 
sequences of tokens:

p(w1, w2, …, wn)

The number of possible token sequences is infinite. How could we 
model this?

A language model is a system that takes sequences of tokens as inputs, 
and produces a probability distribution over the next token.

This makes the definition more tractable:

p(w1, w2, …, wn) =
n

∏
i=1

p(wi |w<i)

We’ll use the chain rule to break this down:
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A language model is a system that takes sequences of tokens as inputs, 
and produces a probability distribution over next tokens:

p(w1, w2, …, wn) =
n

∏
i=1

p(wi |w<i)

Where  is part of a vocabulary .wi V

Over what units should we define our vocabulary? Words, characters, something else? 

These questions relate to notions of tokenization—the mapping of a string to 
(lists of) tokens.
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This is an input.

[This, _is, _an, _in, put, .]

Tokenizer

Language 
Model

It want The Icare?

Embedding

A tokenizer splits a string into tokens.

Tokens are the atomic unit 
of input to an NLP system.

In this example input, there are 4 words, 
but 6 tokens.
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Words

For any NLP system, we need to define a finite vocabulary. 
 
First idea: let’s use the top-k most common words as our vocabulary.

The    man     saw     the     cat      .

Tokens are represented as indices in a vocabulary

11 387 720 5 407 3Tokens:
Text:

9



What can you learn from context?

Boston University is in __________. 

Cats like to eat _____________. 

Where are ___________ napkins? 

15 x 5 = __________ 

The keys to the cabinet ________ on the table.

[Factual knowledge]

[Factual knowledge]

[Parts of speech, sentence structure]

[Arithmetic]
[Subject-verb agreement]
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What can you learn from context?

1102 582 59 80 __________ 10 

608 762 91 203 _____________ 10 

1509 108  ___________ 4092 11  

2091 102 2082 1011 __________ 

81 2529 91 61 ________ 75 61 3520 10

[Factual knowledge]

[Factual knowledge]

[Parts of speech, sentence structure]

[Arithmetic]
[Subject-verb agreement]
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Word Tokenization

• Not as simple as splitting based on whitespace! 

• There are lots of specialized rules about splitting things like contractions, 
punctuation, etc.

Mr. Johnson thinks the boys’ stories about San Francisco aren’t amusing.

Check out spaCy’s tokenizers for examples: https://spacy.io/api/tokenizer
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Types vs. Tokens

If we use a word-level tokenizer, how many tokens do we have?

Types are the unique items in a vocabulary.

How many types?

This document is about cats. This document explains cats.

11
7

[This, document, is, about, cats, ., This, document, explains, cats, .]

The type–token distinction can be tricky: 

• In a word-level tokenizer, are “the” and “The” distinct types? 

• How about “the” and “_the”?
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Some of these datasets have a huge number of types!
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Content Words vs. Function Words

• Function words are a closed class: they are finite, and you cannot (usually) add more 

• Articles: the, a 

• Prepositions: of, by, near 

• Conjunctions: and, but, yet 

• Content words are an open class: they are, in theory, infinite 

• Nouns: cats, generosity, giants, apricity, grub 

• Verbs: fly, abvolate, yeet
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The Finite Vocabulary Problem

• There are an infinite number of words. Thus, any finite vocabulary based in words will 
not fully cover natural language. 

• What if we see tokens in the test set that weren’t in the training set? What if the 
vocabulary is too small for how big the dataset is? 

• If we encounter a word we haven’t seen before, we replace it with a special <UNK> token. 

• <UNK> has its own representation and probability. 

• This token will kill our language model’s quality fast. We want to minimize how often 
this token appears as much as possible.
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The Finite Vocabulary Problem

If a word is outside our vocabulary, we’ll replace it with <UNK>, a token 
for unknown or out-of-vocabulary tokens.

The subject was <UNK>; he <UNK> the <UNK> of a <UNK> eyes.

The subject was Argus-eyed; he perceived the glint of a feline’s eyes.
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Zipf’s Law

Zipf’s Law: If we sort words by frequency, the probability of a word is inversely 
proportional to its rank:

}Hapax 
legomena

p(w) ∝
H
rw

This means that most words 
are very rare!
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Normalization and Lemmatization

Normalization: Standardizing text into a particular format

Examples:

Lowercasing: convert all capitals to lowercase 

James left for Scotland  james left for scotland 

Spelling correction:  
James left for Scoltand 

Abbreviation reformatting: 

Ph.D., U.S.A.  PhD, USA

→

→
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Normalization and Lemmatization

Lemmatization: Replacing inflected forms of a word with their uninflected roots:

ran, runs, running  run→

cars, car  car→

John worked late on projects.  John work late on project.→

(Note: lemmatization is not always as easy as removing suffixes! 
Consider “ran”, “stories”, “went”).

For real NLP systems, normalization is essential, but lemmatization is rare.
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Other Limitations of Word Tokenizers

• Word-level tokenizers will consider different forms of the same word 
as different tokens: 

• This means these forms will all have separate representations 

• Also an issue in languages that have very complex morphology.

run, runs, ran, running

apple, apples
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Morphemes
Çekoslovakyalılaştıramadıklarımızdanmısınız?

Çekoslovaky    alı          laş       tır    a    ma    dık    lar    ımız      dan     mı      sınız?
Czechoslovakia OF BECOME CAUS NEG NEG PST. 

PTCP
PL 1PL. 

POSS
ABL Q 2PL. 

COP

“Are you one of those that we could not make into a Czechoslovakian?”

Each of these units of meaning is a morpheme.

Different languages have very 
different numbers of morphemes 
per word:

22



Morphemes

John          work - ed                  late                on           project - s.
John work late on- PAST project - PL

Each of these units of meaning is a morpheme.

Maybe we could split words into morphemes! Unfortunately, this is slow and hard… 
but inspired by this, let’s pursue the idea of splitting words into subwords. 

Different languages have very 
different numbers of morphemes 
per word:
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Characters

The man saw the cat.

T,h,e,_,m,a,n,_,s,a,w,_,t,h,e,_,c,a,t,.

Character-level tokenizer

Pros: 

- Solves the finite-vocabulary problem—to a degree. 
(But may not work as well for Chinese, which has >100,000 characters.) 

- Easy to implement. 

Cons: 

- Can be hard to train a good language model. Long contexts, 
and the same character can appear in many different contexts.
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2016: Subword Tokenization

• Developed for machine translation by Sennrich et al. [2016] 

• Later used in BERT, RoBERTa, GPT, among other models 

• Relies on a simple algorithm called byte-pair encoding
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Byte-pair Encoding

the man saw the cat.

t,h,e,_,m,a,n,_,s,a,w,_,t,h,e,_,c,a,t,.

1. Split corpus into characters.

2. Count each pair of characters:

(t,h): 2
(h,e): 2

…

(m,a): 1
(a,n): 1

3. Merge the highest-frequency pair into one token:

(t,h) -> th th,e,_,m,a,n,_,s,a,w,_,th,e,_,c,a,t.

4. Repeat m times, where m is the number of merges (a hyperparameter).
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Byte-pair Encoding

the man saw the cat.

th,e,_,m,a,n,_,s,a,w,_,th,e,_,c,a,t.

2. Count each pair of tokens:

(th,e): 2
(m,a): 1
(a,n): 1

…

3. Merge the highest-frequency pair into one token:

(th,e) -> the the,_,m,a,n,_,s,a,w,_,the,_,c,a,t.

4. Repeat m times, where m is the number of merges (a hyperparameter).
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Byte-pair Encoding

1. Split inputs into characters.

2. Count each pair of tokens.

3. Merge the highest-frequency pair into a new token. Do not merge across word boundaries.

4. Repeat k times, where k is the number of merges (a hyperparameter).
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Byte-pair Encoding

• To avoid <UNK>, all possible characters or symbols need to be in the base vocab. 
This can be a lot! 

• Unicode has hundreds of thousands, and growing! 

• GPT-2 uses bytes as the base vocabulary (only 256 of them), and applies BPE on 
top of byte sequences (with some special rules to prevent certain kinds of 
merges). 

• Usually our vocab is somewhere between 32K to 100K
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Unicode

• We used an algorithm called byte-pair encoding, but over characters. What’s the 
difference? What is a “character”? 

• This almost always refers to Unicode characters. 

• Unicode assigns a code point to each character. 

• There are a lot of Unicode characters, so this 
doesn’t solve the finite vocabulary problem.
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UTF-8 and Bytes

• A byte is 8 bits, so it can take values in [0, 255]. 

• In UTF-8, a character contains a variable number of bytes. E.g., ‘ñ' has Unicode code point 
U+00F1, and bytes C3 B1 (195, 177) 

• There are only 256 possible bytes, so a tokenizer based on bytes would have full 
coverage! 

• A byte-based LM could generate invalid Unicode, however, which would yield a 
meaningless sequence
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Implementation Details

• In practice, common tokenizers tend to use subword vocabularies with tens of 
thousands to hundreds of thousands of entries. 

• BERT (2018): 30,522 

• GPT-2 (2019): 50,257 

• Llama 3.1 (2024): 128,256 

• GPT-4o (2024): ≈200,000 

• Gemma 3 (2025): 256,000
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Corpora

• We usually train our tokenizers and language models on corpora—collections of documents. 

• No corpus is fully representative of all natural language. Documents are written: 

• By specific people 

• From a specific time and place 

• In a specific language variety 

• For some specific purpose(s). 

• These days, language models are trained primarily on internet-based corpora. 

• The internet has tons of useful information and knowledge! 

• …But also a great deal of negativity and hatred.
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Collecting a Corpus
Physical document

Scraping

Audio

Scan + OCR

Speech-to-text

Normalization
This is some 
text—don’t 
write it all in 
one place.

this is some 
text — don ’t 
write it all in 
one place .

Tokenization

this, _is, _some, _te, xt, 
_don, ’t, _write, _it, _all, 
_in, _one, _place, .

Tokenizer
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Problems in Tokenization

• A tokenizer trained well for one corpus may not generalize well because of: 

• Language imbalance: A great English tokenizer would not necessarily be a 
good Turkish tokenizer 

• Domain shift: A tokenizer that works well for scientific articles would not 
necessarily work well for social media 

• Temporal shift: A tokenizer trained on internet text from before the year 
2000 may not effectively handle text from the 2025 internet.
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Problems in Tokenization

Handling numbers is particularly tricky. Let’s say you want to represent this sequence: 
85,219 x 20 = 

A BPE-based tokenizer might spit out something like: 
[8, 5, ,, 21, 9, x, 20, =] 

Clearly this isn’t great. Some models (like Gemma 2) just split all digits into their own 
tokens; others (like Llama 3) preserve common multi-digit sequences. There are trade-
offs to both approaches.
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Practical Considerations

The amount of text models 
are trained on is growing 
exponentially:

3 billion
BERT (2018)

30 billion
RoBERTa (2019)

200 billion
GPT-3 (2020)

10 trillion
Llama 3.3 (2024)

1.5 trillion
Llama 2 (2023)

It is impossible to process this much text by hand. This is an issue when most gains 
in NLP come from data these days, and not from algorithmic innovations.
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Regular Expressions
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Regular Expressions

• A.k.a., regex 

• Used in every computer language. Some regex tools you may have used: 

• Unix grep 

• Python re 

• Can be used to: 

• Find strings of a certain type 

• Search large corora 

• Preprocess text
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Regex Tokenizers

The Natural Language Toolkit (nltk)’s word tokenizer is based 
on regular expressions.
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Character Disjunctions

Square brackets indicate logical ORs (disjunctions) or ranges:

You can tell the regex what not to find using a carat (^):
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Counting Characters

ba*: matches b, ba, baaaaa

ba+: matches ba, baaaaa

ba?: matches b or ba

ba{3}: matches baaa

b.: matches ba, bb, b4, …

b.*: matches anything that starts 
with b
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Anchors

These allow you to specify where a regex should be matched.

Example: say you want to find sentences containing the word “the”.

r”the”: Doesn’t catch capitalized “The”!

r”[tT]he”: might match things like “bathe” or “Theme”

r”\b[tT]he\b”: only matches words “The” or “the”!
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Order of Operations

r”the*” matches “theeeee” but not “thethe” because sequences are processed 
after counters.

r”the|any” matches “the” or “any” but not “thany” because disjunctions 
are processed after sequences.
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Application: Word Tokenizer
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Application: BPE Pre-tokenizer

Before we apply the BPE algorithm, we usually do the following:

Split contractions off from their roots:

Split words from each other:

Split numbers from each other:

Split punctuation into separate tokens:

Handle remaining whitespace:

(This is the actual pre-tokenizer 
for GPT-2!)

46



Substitutions

Substitutions allow you to replace one string with another:

string = “The cherry grove was red.”

re.sub(“cherry”, “apricot”, string)

“The apricot grove was red.”
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A string of form “01/15/1985” A date of form “15-01-1985”

• Substitutions can be very powerful. Here’s a regex for converting date formats: 
 
 
 
 

• You can use them to find and remove repeated words in a string:

Substitutions

re.sub(r”(\d{2}})/(\d{2})/(\d{4})”, r“\2-\1-\3”, string)

re.sub(r”\b([A-Za-z]+)\s+\1\b”, “”, string)

Finds a sequence of letters of length at least 1
Captures this sequence as a group and looks back for it after a whitespace

Deletes it 48



Application: A Simple Chatbot

Locates instances of “You are depressed/sad”, replies with “I am sorry to hear you are depressed/sad”

Locates instances of “You are depressed/sad”, replies with “Why do you think you are depressed/sad”

Locates instances of “ always ”, replies with “Can you think of a specific example”
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Next Time

• A brief review of probability theory 

• Using tokens to build our first language models: n-gram language models 

• What can you learn from a token frequeny? From pairs of tokens? From triplets of 
tokens?
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