
Boston University Homework 0: Classification
Due Feb. 3, 2026

CS505: NLP

Goals. The main purpose of this assignment is for you to get experience in implementing text classification
systems, and also to serve as a relatively gentle introduction to PyTorch. It’s also an introduction to the kind
of coding and problem sets we’ll be working with in the course.

Resources

Dependencies. Most assignments in this course will involve programming in Python. Please use Python
3.9 or higher. I recommend installing conda, which will help you install Python packages in a modular way
for each homework assignment.

This assignment has an autograder for the coding portion. The autograder has the following packages
installed: numpy, nltk, spacy, torch. Do not use any packages not in this list, or else the auto-
grader will not work.

Data. For this assignment, we’ll be doing text classification. The data can be found at this Google Drive
link.1 We’ll be training a classifier that takes in news articles and classifies them into one of four categories:

• World news

• Sports

• Business

• Tech/science

For humans, telling the difference is usually very easy. As we’ll see, word-based classifiers find this a bit
harder. To make things even harder, the dataset is also highly imbalanced.2 We have 1000 examples for
world news, but only 50 for sports! It can therefore be easy to learn bad generalizations, and our model may
not be able to effectively handle the less-frequent classes of text. This means that we’ll need to get creative
to build an effective classifier, and even to design a good evaluation metric. In this assignment, the labels
are as follows: "0" is world news, "1" is sports, "2" is business, and "3" is tech/science.

The data that you have access to has been split into a training set, development set, and test set. You
have access to the labels for the training and development sets, but not the test set.

Code structure. You will see several Python scripts in the provided repository. The main script is
lang_classifier.py, which you will be calling to load the data and run your classifiers. It’s okay to
change this file for testing purposes, but the version of the script we’ll use to grade your submission will
not differ from the provided version.

Data handling is done in dataset.py. This script iterates over the data file, and loads each example
as an Example object. Each Example contains a string (the “input”) and a label.

The utils.py script contains some evaluation functions. You will be implementing macro-F1 in this
script.

The main file you’ll be modifying throughout the homework is models.py. It defines some trivial
baselines that we’ll be using as a sanity check below. It also contains various featurization classes and
functions like train_logistic_regression that you’ll be implementing.

1https://tinyurl.com/yeyrvmru
2Imbalanced data is very common in real-world scenarios. This is especially true when data is limited and we need to make use

of every example we can get.

Page 1

https://drive.google.com/file/d/1pVCIOU0wrqS7LFlu9RtMsEXDN8Wn3Mnc/view?usp=sharing
https://drive.google.com/file/d/1pVCIOU0wrqS7LFlu9RtMsEXDN8Wn3Mnc/view?usp=sharing
https://tinyurl.com/yeyrvmru

Boston University Homework 0: Classification
Due Feb. 3, 2026

CS505: NLP

Assignment

Download the code/data for this homework, and unzip the file. Change into the hw0/code/ directory. As
a sanity check, run this script after you download all of the necessary Python dependencies:

python lang_classifier.py --model TECH

This loads the data and labels and initializes a classifier TechClassifier. This classifier always
predicts the label 3 (tech/science). It evaluates on the training and development sets. If everything is working
properly, you should see these accuracies:

• Train accuracy: 0.1212

• Dev accuracy: 0.1176

Note that accuracies here lie in the range [0, 1]. As you can see, this isn’t a great classifier!

Task 1: Bag-of-words Classification (6 points)

Your first task is to implement a bag-of-words unigram classifier. For this, you will need to modify or
implement the following functions in the BoWFeaturizer class in models.py: build_vocab and
get_feature_vector. First, you will need to count the number of occurrences of each token and filter
down the vocabulary to the most frequent tokens.

Then, you will need to map from string inputs to feature vectors. A simple way to do this is by defining
a vector equal to the size of your vocabulary, where each vocabulary item has a dedicated index. There is no
single best way to do this. We probably don’t want to just take all words as-is, because then capitalized and
non-capitalized versions of the same word will be considered as completely different features (which would
shrink our effective vocabulary). For example, you might consider throwing out all low-frequency words
and replacing them with a catch-all low-frequency token. You might also consider lowercasing all of the
words before defining the vocabulary. You could also choose to make each vector index binary, indicating
whether or not the word is present in the sentence, or you could instead make each index an integer (e.g., to
store the number of times the word appeared in the sentence).

Limit your vocabulary size to no more than 5,000. Feel free to filter down the vocabulary further if you
wish (so long as performance is not significantly harmed).

Q1 (3 points; AUTOGRADED). Implement the BoWFeaturizer class. The vector returned by
get_feature_vector should contain the counts of all tokens in the vocabulary in a given text. Recall
that the vocabulary size must be ≤ 5,000; thus, the feature vector should also have length no more than
5,000.

For now, we will use PyTorch’s built-in logistic regression function and a pre-provided gradient descent
function, which have been provided for you in the BlackBoxClassifier class of models.py. Once
you’ve implemented the above, run the following command to train and evaluate the classifier:

python lang_classifier.py --model BOW

To get full credit, you must obtain a development accuracy of at least 0.63 using the pre-provided
hyperparameters (num epochs = 10, vocab_size = 5,000), and training and evaluation time should be less
than 1 minute on the Gradescope backend. (Our version trained in less than 5 seconds on a CPU on my
laptop, and less than 20 seconds on Gradescope.) Please write the training and development accuracy you
obtained in your written report.

Page 2

Boston University Homework 0: Classification
Due Feb. 3, 2026

CS505: NLP

Q2 (1 point). Compare the training and development accuracies of your model. In 1–3 sentences, describe
why they are different.

Q3 (2 points). In train_torch_model in models.py, you are given the weight matrix of your
trained logistic regression model. This is a matrix of size (4, V), where V is the vocabulary size. Each
weight index corresponds to a sort of “importance score” for each token in your vocabulary for predicting a
certain class.

For each class (each row of the weight matrix), list the 5 indices corresponding to the highest weights.
Also list the tokens from your vocabulary that correspond to each of these indices. What trends do you
notice? Do the most important tokens for each class seem reasonable?

Task 2: Logistic Regression (13 points)

Now, you will implement a logistic regression classifier from scratch. Use the same feature vectors you
derived for Task 1.

Q4 (10 points; AUTOGRADED). Implement a multinomial logistic regression classifier from scratch.
You will need to implement the following for this to work:

• The forward function. The skeleton has been implemented in LogisticRegressionClassifier
in models.py; complete this function. (2 points)

• The softmax function. You may not use torch.nn.Softmax or any similar pre-implemented
function, but you are allowed to use torch.exp if you wish. (2 points)

• Stochastic gradient descent. The skeleton of the algorithm has been implemented in
train_logistic_regression; complete this function. (6 points)

Once you’ve implemented these, train and evaluate your model using the following command:

python lang_classifier.py --model LR

Report your model’s final training and development accuracy on the dataset in the written report. For
full credit, your model must obtain a dev accuracy of least 0.63 and finish training and evaluation in 1
minute.

Q5 (3 points). In lang_classifier.py, play around with the hyperparameters of the model. Try
changing the maximum vocabulary size, learning rate, and number of training epochs. In your written
report, provide the best training and development accuracy you were able to get, and the hyperparameters
you used to get them.

In 1–2 sentences, comment on what happened when you made the learning rate too high or too low, in
terms of both the number of epochs it took to converge to a stable loss (or not), and the final accuracy. In
1–2 additional sentences, describe why you think this happened.

Task 3: Feature Engineering (14 points)

Now, using your logistic regression classifier, you will implement more sophisticated features.

Page 3

Boston University Homework 0: Classification
Due Feb. 3, 2026

CS505: NLP

Q6.

(a) (3 points; AUTOGRADED). Implement a bigram feature extractor in BigramFeaturizer. Your
vocabulary should contain only pairs of words, like The|cat or went|to. Use whatever vocabulary
size you wish, as long as it’s reasonable (i.e., less than the number of bigrams in the entire dataset);
we recommend starting at 5,000 and tuning from there. Use this command to train and evaluate your
model:

python lang_classifier.py --model BIGRAM

In the written report, provide the training and development accuracy of the best logistic regression
classifier you can train using your bigram features.

(b) (2 points). You will probably find that the performance of your bigram model is worse than your
original unigram (bag-of-words) classifier. This might be surprising, because a bigram classifier is
more complex and expressive than your earlier unigram classifier. In 2–4 sentences, explain how
feature sparsity leads to overfitting in the bigram classifier. (Hint: You may find Chapter 3.5 and
Figure 3.1 in the textbook helpful.)

Q7.

(a) (8 points). Implement at least two new features of your choice. You can add these to an existing
featurizer or write a new custom featurizer class. These features could be anything, such as the
type/token ratio of the example, average word length, sentence length, TF-IDF scores, among others.
They should not just be combinations of your existing unigram or bigram features. You get 3 points
for each custom feature implemented, and 1 point for each custom feature description in your
written report. Be sure to include the development accuracy of your custom featurizer in your written
report. It is okay if your custom featurizer does not outperform the original models, but it should not
be significantly worse! Include your custom featurizer somewhere in models.py, and write where
we can find your featurizer in your written report.

(b) (1 point). Why do you think the performance of your custom featurizer differs (or doesn’t) from the
models we’ve trained so far?

Task 4: A Better Evaluation Metric (5 points)

Accuracy is a decent metric when a dataset is balanced. As you may have noticed, however, there are many
more world news examples than sports examples, and many more business examples than tech/science
examples. Thus, accuracy is determined more by the classifier’s performance on world news and business
than by its performance on all classes. We will now implement a better evaluation metric that takes accuracy
on each class into account.

Q8.

(a) (3 points). Implement the macro F1 score in utils.py. As a reminder, this involves computing
the F1 score separately for each class, and then taking their macroaverage. Once you’ve done this,
uncomment the evaluation and print lines in lang_classifier.py. Re-evaluate your logistic
regression model from Q4 using the macro F1 score, and put the score on the dev set in your write-up.

(b) (2 point). Is your F1 score significantly different from your accuracy from Q4? Regardless of your
answer, in 1–3 sentences, what does this difference or lack thereof tell you about your classifier?

Page 4

Boston University Homework 0: Classification
Due Feb. 3, 2026

CS505: NLP

Submission

Upload the following two items to Gradescope:

1. Your responses to the questions above should be uploaded as a PDF to HW0: Classification [Writ-
ten]. Ideally, your responses should be in a numbered list. If you were unable to get your code
working, upload any written responses that you can anyway so that we can give partial credit.

2. Zip your modified models.py and utils.py scripts. Upload your .zip file to HW0: Classifica-
tion [Code].

For the code, the autograder will grade your submission using the following criteria:

1. Execution time: do your models finish training and evaluating in a reasonable amount of time?

2. Development set performance: do your models achieve reasonably good accuracies on the develop-
ment set?

3. Test set performance: the autograder does not explicitly assign any points based on your model’s test
set performance, but we may investigate if the test set performance differs by a large degree from the
development set performance (e.g., by more than a few percent).

Note that some additional imported libraries might work, but the autograder may not have everything; we
therefore recommend sticking to numpy, nltk, spacy, and torch. Also note that the course staff may
give you a higher score than what the autograder gives you at their discretion; if your models achieve
low performance, the course staff will assess what you did manually and assign partial credit.

Make sure that these commands all work before you upload:

python lang_classifier.py --model TECH

python lang_classifier.py --model BOW

python lang_classifier.py --model LR

python lang_classifier.py --model BIGRAM

Page 5

