1. Motivation

- Contextualized topic models (CTMs) let us do polylingual topic modeling without explicit crosslingual alignments! Model on English, then transfer.
- For other tasks, we fine-tune encoders (like BERT) on supervised data to improve performance. But topic modeling is unsupervised!
- What should supervision look like for this task?

2. Fine-tuning Tasks

- Fine-tune mBERT and XLM-R on existing tasks: NLI (MultiNLI+SNLI), document classification (MLDoc)
- We propose topic classification: bootstrap supervision using only the data we topic model!

(It's just document classification with autogenerated labels.)

3. Why Does It Work?

- It works! But maybe just because the encoder \bullet sees in-domain data during fine-tuning?
- Let's do continued pre-training (CPT) on the topic modeling data to see if that's why.
- Let's also try adding the topic classification task to the CTM without Reconstructed Bow fine-tuning embeddings (TCCTM).

Fine-tuning Encoders for Improved Monolingual and Zero-shot Polylingual Neural Topic Modeling

4. Results

Topic classification induces most coherent topics! TCCTM is 2nd best and CPT is bad, so the topic classification objective (not in-domain data) is what helps.

Model	Fine-tuning		NPMI	Neural model	Fine-tuned embeddings	Topic classification	In-domain data
LDA	_		0.129				
ProdLDA	_		0.129	\checkmark			
		XLM-R	mBERT				
CTM	None	0.144	0.144	\checkmark			
	NLI	0.153	0.152	\checkmark	\checkmark		
	Doc. Class.	0.156	0.153	\checkmark	\checkmark		
	Topic Class. (COVID)	0.156	0.153	\checkmark	\checkmark	\checkmark	
	Topic Class. (Wiki)	0.160	0.156	\checkmark	\checkmark	\checkmark	\checkmark
CPT+CTM	None	0.147	0.147	\checkmark			\checkmark
	NLI	0.150	0.149	\checkmark	\checkmark		\checkmark
	Topic Class. (COVID)	0.148	0.147	\checkmark	\checkmark	\checkmark	\checkmark
	Topic Class. (Wiki)	0.151	0.149	\checkmark	\checkmark	\checkmark	\checkmark
ТССТМ	None	0.157	0.154	\checkmark		\checkmark	
	NLI	0.152	0.151	\checkmark	\checkmark	\checkmark	
	Doc. Class.	0.153	0.152	\checkmark	\checkmark	\checkmark	

Fine-tuning on *anything* improves zero-shot topic transfer.

	French		German		Portuguese		Dutch		MEAN	
Model	Match	KL	Match	KL	Match	KL	Match	KL	Match	KL
CTM (No FT)	20.11	0.71	41.68	0.46	24.85	0.67	46.74	0.40	33.30	0.56
CTM+FT (NLI)	53.68	0.39	56.29	0.33	54.38	0.36	56.98	0.31	55.33	0.35
CTM+FT (DC)	35.53	0.61	42.09	0.49	38.12	0.53	49.70	0.40	41.36	0.51
CTM+FT (TC, COVID)	41.09	0.54	46.39	0.47	43.56	0.48	51.11	0.40	45.54	0.47
CTM+FT (TC, Wiki)	45.02	0.50	51.11	0.40	42.58	0.49	50.68	0.40	47.17	0.44
CPT (No FT)	23.62	0.68	40.75	0.45	22.89	0.65	45.13	0.42	33.10	0.55
CPT+FT (NLI)	43.43	0.45	48.09	0.38	43.04	0.46	49.53	0.38	46.02	0.42
CPT+FT (TC, COVID)	41.70	0.53	43.67	0.44	39.91	0.60	47.44	0.43	43.18	0.50
CPT+FT (TC, Wiki)	47.02	0.45	51.53	0.36	45.83	0.44	52.54	0.34	49.23	0.40
TCCTM (No FT)	18.81	0.71	41.18	0.46	19.21	0.72	45.49	0.42	31.17	0.58
TCCTM+FT (NLI)	53.30	0.38	55.52	0.33	53.75	0.37	56.40	0.30	54.74	0.34
TCCTM+FT (DC)	41.83	0.51	48.72	0.42	38.80	0.53	49.73	0.39	44.77	0.46
Random	0.92	1.48	1.22	1.39	1.24	1.48	1.09	1.44	1.12	1.44

Turns out that embedding quality (as measured by Semantic Textual Similarity performance) is very important for crosslingual transfer ($\rho = 0.93$) but not for topic coherence $(\rho = 0.46).$

Aaron Mueller and Mark Dredze Johns Hopkins University

5. Takeaways

- 1. Fine-tuning embeddings is essential for contextualized neural topic modeling.
- 2. Best topics achieved through (TC)CTMs fine-tuned on or optimized over topic classification.
- 3. Best topic transfer achieved through CTMs fine-tuned on NLI.
 - Strong correlation between embedding quality and topic transfer (but it saturates quickly).
- Embedding quality and topic quality <u>not</u> strongly correlated, so don't directly optimize over STS! 4. Continued pre-training is counterproductive for this
- task.

More analyses in the paper!